Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:01:26.470Z Has data issue: false hasContentIssue false

Unification of the Electronic Phase Diagrams of the RO1−xFxFeAs-Compounds by Using the Real Fluorine Content

Published online by Cambridge University Press:  21 April 2011

A. Köhler
Affiliation:
Institute for Solid State and Materials Research, IFW Dresden, P.B. 270116 Dresden, Germany TU Bergakademie Freiberg, Leipziger Str. 29, D-095996 Freiberg, Germany
G. Behr
Affiliation:
Institute for Solid State and Materials Research, IFW Dresden, P.B. 270116 Dresden, Germany
Get access

Abstract

Measurements of the actual fluorine content x in the RO1−xFxFeAs-samples by wavelength-dispersive X-ray spectroscopy (WDX) reveal sample dependent discrepancies to the nominal fluorine content (initial weight). In particular for SmO1−xFxFeAs, the measured value only reached approximately half of the required value. In the lanthanum compound LaO1−xFxFeAs, we found a good agreement mainly for x>0.05, but the fluorine hardly goes into the sample for x<0.05. We used the measured fluorine content when plotting the electronic phase diagrams again and find a more consistent picture occurs as well for our samples as for comparison with the divers published data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uemura, Y.J., Physica B 404 3195 (2009).Google Scholar
2. Köhler, A. and Behr, G., J. Supercond. Nov. Magn. 22 565 (2009)Google Scholar
3. Artioli, G.A., Malavasi, L., Mozzati, M.C. and Fernandez, Y. Diaz, J. Am. Chem. Soc. 131 12044 (2009).Google Scholar
4. Luetkens, H., Klauss, H.-H., Kraken, M., Litterst, F. J., Dellmann, T., Klingeler, R., Hess, C., Khasanov, R., Amato, A., Baines, C., Hamann-Borrero, J., Leps, N., Kondrat, A., Behr, G., Werner, J., Buechner, B., Nature Materials 8 (2009) 305 Google Scholar
5. Zao, J., Huang, Q., Cruz, Clarina de la, Li, Shiliang, Lynn, J. W., Chen, Y., Green, M. A., Chen, G. F., Li, G., Li, Z., Luo, J. L., Wang, N. L., Dai, Pengcheng, Nature Materials 7 (2008) 953 Google Scholar
6. Drew, A.J., Niedermayer, Ch., Baker, P. J., Pratt, F. L., Blundell, S. J., Lancaster, T., Liu, R. H., Wu, G., Chen, X. H., Watanabe, I., Malik, V. K., Dubroka, A., Rössle, M., Kim, K.W., Baines, C. and Bernhard, C., Nature Materials 8 (2009) 310 Google Scholar
7. Malavasi, L., Artioli, G.A., Ritter, C., Mozzati, M.C., Maroni, B., Pahari, B. and Caneschi, A., J. Am. Chem. Soc., 132 2417 (2010)Google Scholar