Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:44:28.326Z Has data issue: false hasContentIssue false

Undoped GaSb Growth by MOCVD

Published online by Cambridge University Press:  25 February 2011

Yan Kuin Su
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C
Fuh Shyang Juang
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C
Get access

Abstract

Undoped GaSb epilayers have been grown on (100) GaSb and S.I. GaAs substrates. The effects of growth temperatures and TMSb/TEGa mole fraction ratios on the epitaxial properties of surface morphology, growth rate, hole concentration and mobility (300K and 77K) have been studied. The lowest concentration 1.8x101 6 cm- 3 (77K) and the highest mdobility 1447 cm2/V.s (77K) can be obtained under V/III ratio of 6.64 at 550°C. Photoluminescence intensity was found to be a function of the V/III ratios. When V/III ratios increased or decreased beyond 6-8, the BE peaks disappeared and PL spectra became roughened.

To reduce the effects of large lattice-mismatch in highly strained GaSb/GaAs system (7% mismatch) on the electrical properties, a 10-period In0.3Ga0.7As/GaAs (60A/40A) strain layer superlattice (SLS) has been grown on GaAs substrates as a dislocation filter before the GaSb epitaxial growth. From the comparison of 77K Hall mobility of GaSb/GaAs as a function of growth temperature with that of GaSb/SLS/GaAs, it was clearly observed that the epilayers grown on SLS structures have higher mobility than those grown directly on GaAs substrates. From the TEM analysis, we observed that all dislocations propagated up to the GaSb epilayer surface in the GaSb/GaAs system but some of the dislocations bending before reaching the epilayer surface in the GaSb/SLS/GaAs system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saraki, A., Nishiuma, M. and Takeda, Y., Jap. J. Appl. Phys. 19, 1695 (1980).Google Scholar
2. Srivastaua, A.K., DeWinter, J.C., Caneau, C., Pollack, H.A. and Zyshind, J.L., Appl. Phys. Lett. 48, 903 (1986).Google Scholar
3. Chiu, T.H., Zyskind, J.L. and Tsang, W.T., J. Electron. Materials 16, 57 (1987).Google Scholar
4. Cherng, H.J., Stringfellow, G.B., Kister, D.W., Srivastava, A.K. and Zyskind, J.L., Appl. Phys. Lett. 48, 419 (1986).Google Scholar
5. Law, H.D., Chin, R., Nakano, K. and Milano, R.A., IEEE J. Quantum Electron. QE- 17, 275 (1981).Google Scholar
6. Caneau, C., Jyskind, J.L., Sulhoff, J.W., Glover, T.E., Centanni, J., Burrus, C.A., Dendai, A.G. and , Pollack, Appl. Phys. Lett. 51, 764 (1987).Google Scholar
7. Drakin, A.E., Jeliseev, P.G., Sverdlov, B.N., Bochkarev, A.E., Dolgino, L.M. and Druzhinina, L.V., IEEEE J. Quantum Electron. QE- 23, 1089 (1987).Google Scholar
8. Miki, H., Segawa, K. and Fujibayashi, K., Jpn. J. Appl. Phys. 13, 203 (1974).Google Scholar
9. Capasso, F., Panish, M.B. and Sumski, S., IEEE J. Quantum Electron. 17, 273 (1981).Google Scholar
10. DeWinter, J.C. and Pollack, M.A., J. Appl. Phys. 59, 3593 (1986).Google Scholar
11. Chen, S.C., Su, Y.K. and Juang, F.S., J. Cryst. Growth 92, 118 (1988).Google Scholar
12. Chen, S.C. and Su, Y.K., J. Appl. Phys. 66, 350 (1989).CrossRefGoogle Scholar
13. Su, Y.K., Chen, S.C. and Juang, F.S., Solid-state Electron. 32, 733 (1989).Google Scholar
14. Su, Y.K. and Juang, F.S., J. Material Science 25, 843 (1990).CrossRefGoogle Scholar
15. Lee, M., Nicholas, D. J., Singer, K.E. and Hamilton, B., J. Appl. Phys. 59, 2895 (1986).Google Scholar
16. Juang, F.S. and Su, Y.K., Prog. Cryst. Growth and Characterization, to be published in 1990.Google Scholar
17. Manasevit, H.M. and Hess, K.L., J. Electrochem. Soc.: Solid-State Sci and Techn. 126, 2031 (1979).CrossRefGoogle Scholar
18. Cooper, C.B. III, Saxena, R.R. and Ludowise, M.J., J. Electro. Mater. 11,1001(1982).Google Scholar
19. Haywood, S.K., Henriques, A.B., Mason, N.J., Nicholas, R.J. and Walker, P.J., Semicon. Sci. Technol. 3, 315 (1988).CrossRefGoogle Scholar
20. Haywood, S.K., Mason, N.J., Walker, P.J., J. Cryst. Growth 93, 56 (1988).CrossRefGoogle Scholar
21. Chidley, E.T.R., Haywood, S.K., Mallard, R.E., Mason, N.J., Nicholas, R.J., Walker, P.J. and Warburton, R.J., Appl. Phys. Lett. 54, 1241 (1989).CrossRefGoogle Scholar
22. Haywood, S.K., Chidley, E.T.R., Mallard, R.E., Mason, N.J., Nicholas, R.J., Walker, P.J. and Warburton, R.J., Appl. Phys. Lett. 54, 922 (1989).Google Scholar
23. Kaneko, T., Asahi, H., Okuno, Y. and Gonda, S., J. Cryst. Growth 95, 158 (1989).CrossRefGoogle Scholar
24. Dapkus, P.D., Manasevit, H.M., Hess, K.L., Low, T.S. and Stillman, G.E., J. Cryst. Growth 55, 10 (1981).Google Scholar
25. Biefeld, R.M., “Compound Semiconductor Strained Layer Superlattice”, p.59(1981).Google Scholar