Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:41:40.606Z Has data issue: false hasContentIssue false

Understanding Coating and Substrate Heterogeneities using Electrochemical Impedance Methods

Published online by Cambridge University Press:  10 February 2011

A. M. Mierisch
Affiliation:
Center for Electrochemical Science and Engineering, Dept. of Materials Science, University of Virginia, Charlottesville, VA 22903, srt6p@sl.mail.virginia.edu
S. R. Taylor
Affiliation:
Center for Electrochemical Science and Engineering, Dept. of Materials Science, University of Virginia, Charlottesville, VA 22903, srt6p@sl.mail.virginia.edu
Get access

Abstract

This study examines natural breakdown events on organic coated AA 2024-T3 coated using Local Electrochemical Impedance (LEI) mapping (M) and spectroscopy (S). LEIM was able to identify not only different types of defects on this system, but also provided information about the kinetics and stages of development of these defects. Supportive evidence regarding the impedance characteristics of these defects was provided by Capillary Electrophoresis (CE). Data from early stages of defect development indicate that an increased impedance develops at the site. This is related to either the development of aggregated water or electrolyte, as well as corrosion product development. Direct evidence of defect healing is also provided.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leidheiser, H. Jr, Corrosion, 39(5): 189 (1983).Google Scholar
2. Mansfield, F., Kendig, M.W., Tasi, S., Corros. Sci., 23(4):317 (1983).Google Scholar
3. Taylor, S.R., IEEE Trans. Elee. Insui, 24(5):787 (1989).Google Scholar
4. Haruyama, S., Asari, M., Tsuru, , “Corrosion Protection by Organic Coatings”, The Electrochemical Society, Proc. 87–2 (1987), p. 197.Google Scholar
5. Hirayama, S., Haruyama, S., Corrosion, 47(12):953 (1991).Google Scholar
6. Chen, C.T. and Skerry, B.S., Corrosion, 47(8):598 (1991).Google Scholar
7. Grandie, J.A., Taylor, S.R., Corrosion, 50(10):792 (1994).Google Scholar
8. Mayne, J.E.O., Mills, D.J., J. Oil Col Chem Assoc, 58:155 (1975).Google Scholar
9. Bacon, R.C., Smith, J.J., Rigg, F.M., Ind. Engr. Chem., 40(1): 161 (1948).Google Scholar
10. Lillard, R.S., Moran, P.J., Isaacs, H.S., J. Electrochem. Soc., 139(4): 1007 (1992).Google Scholar
11. Wittmann, M.W., Taylor, S.R., in Advances in Corrosin Protection by Organic Coatings II, Ed. by Scantlebury, J.D. and Kendig, M.W., The Electrochem Soc., PV 95–13:158168 (1995).Google Scholar
12. Taylor, S.R., Wittmann, M.W., in Electrically Based Microstructural Characterization, Ed. by Gerhardt, R.A., Taylor, S.R., and Garboczi, E.J., Vol. 411, MRS (1996), p. 31.Google Scholar
13. Isaacs, H.S., Vyas, B., in Electrochemical Corrosion Testing ASTM STP 727. Ed. by Mansfeld, F., Betocci, U., ASTM 1981, p. 3.Google Scholar
14. Rosenfeld, I.L., Danilov, I.S., Corros. Sci., 7:129 (1967).Google Scholar
15. Isaacs, H.S., Corros. Sci., 28(6):547 (1988).Google Scholar
16. Strattman, M., Streckel, H., Werkstoffe und Korrosion, 43:316 (1992).Google Scholar
17. Standisti, J.V., Leidheiser, H. Jr, Corroison, 36(8):390 (1980).Google Scholar
18. Isaacs, H.S., Kendig, M.W., Corrosion, 36(6):269 (1980).Google Scholar
19. Buchheit, R.G., Grant, R.P., Hlava, P.F., Mckenzie, B., Zender, G.L., J. Electrochem. Soc, 144(8):2621 (1997).Google Scholar
20. Castle, J.E., in Corrosion Resistant Coatings. NACE, p. 165 (1997).Google Scholar
21. de Wit, J.H.W, van der Weijde, D.H., Lenderink, H.J.W., paper no. 102, 13th International Corrosion Congress, 1997.Google Scholar