Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:13:13.839Z Has data issue: false hasContentIssue false

Ultraviolet Light Emitting Devices Using AlGdN

Published online by Cambridge University Press:  30 June 2011

Takashi Kita
Affiliation:
Department of Electrical and Electronics Engineering, Graduate School of Engineering, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
Shinya Kitayama
Affiliation:
Department of Electrical and Electronics Engineering, Graduate School of Engineering, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
Tsuguo Ishihara
Affiliation:
Hyogo Prefectural Institute of Technology, Yukihira 3-1-12, Suma, Kobe 654-0037, Japan
Hirokazu Izumi
Affiliation:
Hyogo Prefectural Institute of Technology, Yukihira 3-1-12, Suma, Kobe 654-0037, Japan
Yoshitaka Chigi
Affiliation:
YUMEX INC., Itoda 400, Yumesaki, Himeji, Hyogo 671-2114, Japan
Tetsuro Nishimoto
Affiliation:
YUMEX INC., Itoda 400, Yumesaki, Himeji, Hyogo 671-2114, Japan
Hiroyuki Tanaka
Affiliation:
YUMEX INC., Itoda 400, Yumesaki, Himeji, Hyogo 671-2114, Japan
Mikihiro Kobayashi
Affiliation:
YUMEX INC., Itoda 400, Yumesaki, Himeji, Hyogo 671-2114, Japan
Get access

Abstract

We developed ultra-violet field-emission devices using rare-earth nitrides of Al1-xGdxN grown by a reactive radio-frequency magnetron sputtering technique. The Al1-xGdxN phosphor film excited by high-energy electrons shows a resolution limited, narrow intra-orbital luminescence from Gd3+ ions at 318 nm. The devise characteristics depend on injected current and acceleration voltage, which were analyzed by considering multiple excitation process of injected high-energy electrons.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hirayama, H., Fujikawa, S., Noguchi, N., Norimatsu, J., Takano, T., Tsubaki, K., Kamata, N., Phys. Status Solidi (a) 206, 1176 (2009).Google Scholar
2. Kita, T., Kitayama, S., Kawamura, M., Wada, O., Chigi, Y., Kasai, Y., Nishimoto, T., Tanaka, H., and Kobayashi, M., Appl. Phys. Lett. 93, 211901 (2008).Google Scholar
3. Kitayama, S., Kita, T., Kawamura, M., Wada, O., Chigi, Y., Kasai, Y., Nishimoto, T., Tanaka, H., and Kobayashi, M., IOP Conf. Series: Materials Science and Engineering 1, 012001 (2009).Google Scholar
4. Kita, T., Kitayama, S., Yoshitomi, H., Ishihara, T., Izumi, H., Chigi, Y., Kasai, Y., Nishimoto, T., Tanaka, H., Kobayashi, M., J. Ceramic Processing Research 12, s73 (2011).Google Scholar
5. Vetter, U., Zenneck, J., and Hofsäss, H., Appl. Phys. Lett. 83 (2003) 2145.Google Scholar
6. Gruber, J. B., Vetter, U., Hofsäss, H., Zandi, B., Reid, M. F., Phys. Rev. B 69 195202 (2004).Google Scholar
7. Zavada, J. M., Nepal, N., Lin, J. Y., Jiang, H. X., Brown, E., Hömmerich, U., Hite, J., Thaler, G. T., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett. 89, 152107 (2006).Google Scholar
8. Maqbool, M., Ahmad, I., Richardson, H. H., and Kordesch, M. E., Appl. Phys. Lett. 91, 193511 (2007).Google Scholar
9. Yoshitomi, H., Kitayama, S., Kita, T., and Wada, O., Phys. Rev. B, 83, 155202 (2011).Google Scholar
10. Kishi, N., Kita, T., Magario, A., and Noguchi, T., J. Appl. Phys. 109, 074307 (2011).Google Scholar
11. Koizumi, A., Fujiwara, Y., Urakami, A., Inoue, K., Yoshikane, T., and Takeda, Y., Appl. Phys. Lett. 83, 4521 (2003).Google Scholar