Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:15:09.651Z Has data issue: false hasContentIssue false

Ultra-Low-Energy Straintronics Using Multiferroic Composites

Published online by Cambridge University Press:  24 July 2014

Kuntal Roy*
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, U.S.A.
Get access

Abstract

The primary impediment to continued improvement of charge-based electronics is the excessive energy dissipation incurred in switching a bit of information. With suitable choice of materials, devices made of multiferroic composites, i.e., strain-coupled piezoelectric-magnetostrictive heterostructures, dissipate miniscule amount of energy of ∼1 attojoule at room-temperature, while switching in sub-nanosecond delay. Apart from devising memory bits, such devices can be also utilized for building logic, so that they can be deemed suitable for computing purposes as well. Here, we first review the current state of the art for building nanoelectronics using multiferroic composites. On a recent development, it is shown that these multiferroic straintronic devices can be also utilized for analog signal processing, with suitable choice of materials. By solving stochastic Landau-Lifshitz-Gilbert equation of magnetization dynamics at room-temperature, it is shown that we can achieve a voltage gain, i.e., these straintronic devices can act as voltage amplifiers.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Roy, K., SPIN 3, 1330003 (2013).CrossRefGoogle Scholar
Roy, K. et al. , Appl. Phys. Lett. 99, 063108 (2011). News: Nature 476, 375(2011).CrossRefGoogle Scholar
Spaldin, N. A. and Fiebig, M., Science 309, 391 (2005).CrossRefGoogle ScholarPubMed
Eerenstein, W. et al. , Nature 442, 759 (2006).CrossRefGoogle Scholar
Pertsev, N. A., Phys. Rev. B 78, 212102 (2008).CrossRefGoogle Scholar
Roy, K. et al. , J. Appl. Phys. 112, 023914 (2012).CrossRefGoogle Scholar
Roy, K. et al. , Sci. Rep. 3, 3038 (2013).CrossRefGoogle Scholar
Roy, K. et al. , Phys. Rev. B 83, 224412 (2011).CrossRefGoogle Scholar
Roy, K., Appl. Phys. Lett. 103, 173110 (2013).CrossRefGoogle Scholar
Roy, K., Appl. Phys. Lett. 104, 013103 (2014).CrossRefGoogle Scholar
Tiercelin, N. et al. , Appl. Phys. Lett. 99, 192507 (2011).CrossRefGoogle Scholar
Lei, N. et al. , Nature Commun. 4, 1378 (2013).CrossRefGoogle Scholar
, H. Kim, K. D. et al. , Nano Lett. 13, 884 (2013).CrossRefGoogle Scholar
Jin, T. et al. , Appl. Phys. Express 7, 043002 (2014).CrossRefGoogle Scholar
Landau, L. and Lifshitz, E., Phys. Z. Sowjet. 8, 101 (1935).Google Scholar
Gilbert, T. L., IEEE Trans. Magn. 40, 3443 (2004).CrossRefGoogle Scholar
Brown, W. F., Phys. Rev. 130, 1677 (1963).CrossRefGoogle Scholar
Chikazumi, S., Physics of Magnetism (Wiley New York, 1964).Google Scholar
Beleggia, M. et al. , J. Phys. D: Appl. Phys. 38, 3333 (2005).CrossRefGoogle Scholar
Jia, Y. et al. , Appl. Phys. Lett. 88, 242902 (2006).CrossRefGoogle Scholar
Fechner, M. et al. , Phys. Rev. Lett. 108, 197206 (2012).CrossRefGoogle Scholar
, S. Parkin, S. P. et al. , Nature Mater. 3, 862 (2004).CrossRefGoogle Scholar
Graf, T. et al. , IEEE Trans. Magn. 47, 367 (2011).CrossRefGoogle Scholar
Roy, K., unpublished.Google Scholar
Roy, K., unpublished.Google Scholar