Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:17:16.594Z Has data issue: false hasContentIssue false

Ultrafast spectroscopy of laser-initiated nanoenergetic materials

Published online by Cambridge University Press:  01 February 2011

Yanqiang Yang
Affiliation:
Department of Physics, Jilin University, Changchun, PRC.
Zhaoyong Sun
Affiliation:
Department of Department of Chemistry, University of California-Davis, Davis, CA 95616.
Shufeng Wang
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
Selezion A. Hambir
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
Hyunung Yu
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
Dana D. Dlott
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
Get access

Abstract

A picosecond laser flash-heating technique is combined with ultrafast spectroscopic probe diagnostics to investigate the fundamental mechanisms of nanoenergetic material performance. The systems studied include Al nanoparticle aggregates in nitrocellulose (NC) oxidizer, size-selected Al nanoparticles in NC and in Teflon oxidizers, and nanoparticle thermites consisting of 30 nm Al and nanometric MoO3. The time-dependence of reactions between Al and the oxidizer on the picosecond to nanosecond time scales are studied using coherent anti-Stokes Raman scattering (CARS) to monitor oxidizer consumption. The time-dependence of energy release is measured using fast optical spectroscopy. The space-dependence of chemical reaction propagation over 100 to 1500 nm distances is studied using the average distance between nanoparticles as a ruler. The distance of reaction propagation from a flash-heated Al nanoparticle increases linearly with energy, which is explained by a hydrodynamic model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fried, L. E., Manaa, M. R., Pagoria, P. F., and Simpson, R. L., Annu. Rev. Mater. Res. 31, 291 (2001).Google Scholar
2. Tillotson, T. M., Gash, A. E., Simpson, R. L., Hrubesh, L. W., Satcher, J., J. H., , and Poco, J. F., J. Non Cryst. Solids 2001, 338 (2001).Google Scholar
3. Price, E. W., in Fundamentals of Solid-Propellant Combustion, Progress in Aeronautics and Astronautics, Vol. 90, edited by Kuo, K. and Summerfield, M. (AIAA, New York, 1984), p. 479.Google Scholar
4. Wang, S., Yang, Y., Sun, Z., and Dlott, D. D., Chem. Phys. Lett. 368, 189 (2002).Google Scholar
5. Wang, S., Yang, Y., Sun, Z., and Dlott, D. D., AIP Confer. Proc. in press (2004).Google Scholar
6. Yang, Y., Sun, Z., Wang, S., and Dlott, D. D., J. Phys. Chem. B 107, 4485 (2003).Google Scholar
7. Yang, Y., Wang, S., Sun, Z., and Dlott, D. D., J. Appl. Phys. submitted 11/03 (2004).Google Scholar
8. Parker, L. J., Ladouceur, H. D., and Russell, T. P., AIP Conf. Proc. 505, 941 (2000).Google Scholar
9. Hambir, S. A., Franken, J., Hare, D. E., Chronister, E. L., Baer, B. J., and Dlott, D. D., J. Appl. Phys. 81, 2157 (1997).Google Scholar
10. Eesley, G. L., Coherent Raman Spectroscopy (Pergamon, Oxford, 1991).Google Scholar
11. Jan, N. and Stauffer, D., Int. J. Mod. Phys. C 9, 341 (1998).Google Scholar
12. Nakamura, K. G., Wakabayashi, K., and Kondo, K., AIP Confer. Proc. 620, 1259 (2002).Google Scholar
13. Reho, J. H., Moore, D. S., Funk, D. J., Fisher, G. L., and Rabie, R. L., AIP Conf. Proc. 620, 1219 (2002).Google Scholar
14. Moore, D. S., Funk, D. J., Gahagan, K. T., Reho, J. H., Fisher, G. L., McGrane, S. D., and Rabie, R. L., AIP Conf. Proc. 620, 1351 (2002).Google Scholar
15. Andersen, W. H., Propellants, Explos., Pyrotech. 9, 39 (1984).Google Scholar
16. Walker, F. E. and Walsey, R. J., Propell. Explosiv. 1, 73 (1976).Google Scholar
17. Zel'dovich, Y. B. and Raiser, Y. P., Physics of Shock Waves and High-temperature Hydrodynamic Phenomena (Academic Press, New York, 1966).Google Scholar
18. Köhler, J. and Meyer, R., Explosives, fourth edition (VCH Publishers, New York, 1993).Google Scholar