Published online by Cambridge University Press: 01 February 2011
We demonstrate two ways in which the optical band-gap of a 2-D macroporous silicon photonic crystal can be tuned. In the first method the temperature dependence of the refractive index of an infiltrated nematic liquid crystal is used to tune the high frequency edge of the photonic band gap by up to 70 nm as the temperature is increased from 35 to 59°C. In a second technique we have optically pumped the silicon backbone using 150 fs, 800 nm pulses, injecting high density electron hole pairs. Through the induced changes to the dielectric constant via the Drude contribution we have observed shifts up to 30 nm of the high frequency edge of a band-gap.