Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T14:59:54.318Z Has data issue: false hasContentIssue false

Transport Properties of Thermoelectric Nanocomposites

Published online by Cambridge University Press:  31 January 2011

Lilia M Woods
Affiliation:
lwoods@cas.usf.edu, University of South Florida, Physics Department, Tampa, Florida, United States
Adian Popescu
Affiliation:
apopesc2@mail.usf.edu, University of South Florida, Physics Department, Tampa, Florida, United States
Joshua Martin
Affiliation:
jmartin@mail.usf.edu, University of South Florida, Physics Department, Tampa, Florida, United States
George S. Nolas
Affiliation:
gnolas@usf.edu, United States
Get access

Abstract

We present a theoretical model for carrier conductivity and Seebeck coefficient of thermoelectric materials composed of nanogranular regions. The model is used to successfully describe experimental data for chalcogenide PbTe nanocomposites. We also present similar calculations for skutterudite CoSb3 nanocomposites. The carrier scattering mechanism is considered explicitly and it is determined that it is a key factor in the thermoelectric transport process. The grain interfaces are described as potential barriers. We investigate theoretically the role of the barrier heights, widths, and distances between the barriers to obtain an optimum regime for the composites thermoelectric characetristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dresselhaus, M.S. et al, “New directions for low dimensional thermoelectric materials”, Adv. Mater. 19, 1042 (2007); G.J. Snyder and E.S. Toberer, “Complex Thermoelectric Materials”, Nature Mater. 7, 105 (2008);Google Scholar
2 Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., Nature 413, 597 (2001);Google Scholar
3 Harman, T.C., Taylor, P.J., Walsh, M.P., and LaForge, B.E., Science 297, 2229 (2002);Google Scholar
4 Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B 47, 16631 (1993);Google Scholar
5 Hsu, K.F., Loo, S., Guo, F., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., and Kanatzidis, M.G., Science 303, 818 (2004);Google Scholar
6 Toprak, M.S., Stiewe, S., Platzek, D., Williams, S., Bertini, L., Mueller, E., Gatti, C., Rowe, M., and Muhammed, M., Adv. Func. Mat. 14, 1189 (2004);Google Scholar
7 Martin, J., Nolas, G. S., Zhang, W., and Chen, L., Appl. Phys. Lett. 90, 222112 (2007);Google Scholar
8 Heremans, J.P., Thrush, C.M., and Morelli, D.T., Phys. Rev. B 70, 115334 (2004);Google Scholar
9 Popescu, A., Woods, L.M., Martin, J., and Nolas, G.S., Phys. Rev. B, to be published;Google Scholar
10 Rowe, D. M. and Bhandari, C. M., Modern Thermoelectrics (London, Holt Saunders, 1983);Google Scholar
11 Sofo, J.O. and Mahan, G.D., Phys. Rev. B 58, 15620 (1998);Google Scholar
12 Kishimoto, K. and Koyanagi, T., J. Appl. Phys. 92, 2544 (2002); K. Kishimoto, K. Yamamoto, and T. Koyanagi, Jpn. J. Appl. Phys. 42, 501 (2003).Google Scholar
13 Martin, J., Wang, L., Chen, L., and Nolas, G. S., Phys. Rev B 79, 115311 (2009);Google Scholar
14 Kirby, H., Martin, J., Datta, A. Chen, L., and Nolas, G. S., Mater. Res. Soc. Symp., present volume.Google Scholar