Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:43:58.321Z Has data issue: false hasContentIssue false

Transmission Electron Microscopy Study on the Surface Properties of CNTs and Fullerites Exposed to CF4 Plasma

Published online by Cambridge University Press:  01 February 2011

Kaoru Shoda
Affiliation:
27181u@ube-ind.co.jp, Osaka University, Department of Physics, Graduate School of Science, 1-16 Machikane-yama, Toyonaka, Osaka, 560-0043, Japan
Seiji Takeda
Affiliation:
takeda@tem.phys.sci.osaka-u.ac.jp, Osaka University, Department of Physics, Graduate School of Science, 1-16 Machikane-yama, Toyonaka, Osaka, 560-0043, Japan
Get access

Abstract

Various types of CNTs, i.e. single-wall, double-wall, triple-wall, quadruple-wall and multi-wall carbon nanotubes (CNTs), and fullerites were fluorinated in inductive coupled radio-frequency (RF) CF4 plasma at 13.56 MHz, and their structural and bonding properties were investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). We have discussed the correlation between the number of graphene sheets in a CNT and the stability against the fluorination. TEM and XPS analysis clearly state that increase of the number leads to the gain of fluorinated stability. The fluorination of CNTs is initiated at outer tubes and proceeds to inner tubes with increasing RF power, but fluorination depth is limited to only surface area. The fluorination of fullerites forms amorphous layer at the surface, and increases the depth of the layer with RF power.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature (London) 354, 56 (1991).Google Scholar
2. Iijima, S., and Ichihashi, T., Nature (London) 363, 603 (1993).Google Scholar
3. Lian, Y., Maeda, Y., Wakahara, T., Akasaka, T., Kazaoui, S., Minami, N., Shimizu, T., Choi, N., and Tokumoto, H., J. Phys. Chem. B 108, 8848 (2004).Google Scholar
4. Gojny, F. H., Nastalczyk, J., Roslaniec, Z., and Schulte, K., Chem. Phys. Lett. 370, 820 (2003).Google Scholar
5. Touhara, H., and Okino, F., Carbon 38, 241 (2000).Google Scholar
6. Seifert, G., Kohler, T., and Frauenheim, T., Appl. Phys. Lett. 77, 1313 (2000).Google Scholar
7. Kudin, K. N., Bettinger, H. F., and Scuseria, G. E., Phys. Rev. B 63, 045413 (2001).Google Scholar
8. Mickelson, E. T., Huffman, C. B., Rinzler, A. G., Smalley, R. E., Hague, R. H., and Margrave, J. L., Chem. Phys. Lett. 296, 188 (1998).Google Scholar
9. Tressaud, A., Durand, E., and Labrugere, C., Fluorine, J. Chem. 125, 1639 (2004).Google Scholar
10. Fellen, A., Bittencourt, C., Pireaux, J. J., Lier, G. V., and Charlier, J. C., J. Appl. Phys. 98, 074308 (2005). To 10Google Scholar
11. An, K. H., Heo, J. G., Jeon, K. G., Bae, D. J., Jo, C., Yang, C. W., Park, C. Y., Lee, Y. H., Lee, Y. S., and Chung, Y. S., Appl. Phys. Lett. 80, 4235 (2002).Google Scholar
12. Plank, N. O. V., Jiang, L., and Cheung, R., Appl. Phys. Lett. 83, 2426 (2003).Google Scholar
13. Zhu, Y. W., Cheong, F. C., Yu, T., Xu, X. J., Lim, C. T., Thong, J. T. L., Shen, Z. X., Ong, C. K., Liu, Y. J., Wee, A. T. S., and Sow, C. H., Carbon 43, 395 (2005).Google Scholar
14. Lieberman, M. A., and Lichtenberg, A. J., “Principles of Plasma Discharges and Material Processing,” (Wiley-Interscience, New York, 1994) pp. 1418 Google Scholar
15. Smith, B. W., and Luzzi, D. E., J. Appl. Phys. 90, 3509 (2001).Google Scholar
16. Lai, S. H., Huang, K. P., Pan, Y. M., Chen, Y. L., Chan, L. H., and Lin, P., Chem. Phys. Lett. 382, 567 (2003).Google Scholar
17. Saito, R., Dresselhaus, G., and Dresselhaus, M. S., “Physical Properties of Carbon Nanotubes,” (Imperial College Press, London, 1998) pp. 207225.Google Scholar
18. Li, Y. Z., Chander, M., Patrin, J. C., Weaver, J. H., Chibante, L. P. F., and Smalley, R. E., Science 253, 129 (1991).Google Scholar
19. Nolting, V., and Verwoerd, W. S., J. Phys. Chem. Solids 58, 1907 (1997).Google Scholar