Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:59:18.005Z Has data issue: false hasContentIssue false

Transmission Electron Microscopy Studies of the Polycrystalline Silicon–SiO2 Interface

Published online by Cambridge University Press:  15 February 2011

J. C. Bravman
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, (U.S.A.)
R. Sinclair
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, (U.S.A.)
Get access

Abstract

A transmission electron microscopy analysis has been made of the wet oxidation of polycrystalline silicon (poly–Si) films heavily doped with phosphorus in which the poly–Si–SiO2 interface has been given primary consideration. Using conventional and cross section transmission electron microscopy two distinct morphologies have been identified. Firstly, there is a region of enhanced oxidation at the poly–Si grain boundaries, with the concurrent formation of a new crystalline phase. Secondly, a significant roughening of the interface occurs, also associated with a crystalline phase. It is postulated that the formation of these features requires an inhomogenous distribution of the phosphorus dopant, which resulted from low temperature processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rosier, R. S., Solid State Technol., 20 (1977) 63.Google Scholar
2. Kamins, T. I., Mandurah, M. M. and Saraswat, K. C., J. Electrochem. Soc., 125 (1978) 927.Google Scholar
3. Mandurah, M. M., Saraswat, K. C. and Kamins, T. I., J. Electrochem. Soc., 126 (1979) 1019.CrossRefGoogle Scholar
4. Sunami, H., J. Electrochem. Soc., 125 (1978) 8921.Google Scholar
5. Wada, Y. and Nishimatsu, S., J. Electrochem. Soc., 125 (1978) 1499.CrossRefGoogle Scholar
6. Kamins, T. I., J. Electrochem. Soc., 126 (1979) 833.Google Scholar
7. Grove, A., Leistiko, O. Jr., and Sah, C.T., J. Appl. Phys., 35 (1964)2695.Google Scholar
8. Deal, B. and Grove, A., J. Appl. Phys., 36 (1965) 3770.Google Scholar
9. Mandurah, M. M., Saraswat, K. C., Helms, C. R. and Kamins, T. I., J. Appl. Phys., 51 (1980) 5755.Google Scholar
10. Sinclair, R., Ponce, F. A., Yamashita, T. and Bravman, J. C., Proc. 39th Electron Microscopy Society of America Annu. Meet., Atlanta, GA, 1981, Claitor's Publishing Division, Baton Rouge, LA, 1981, p. 124.Google Scholar
11. Sheng, T. T. and Marcus, R. B., J. Electrochem. Soc., 127 (1980) 737.Google Scholar
12. Marcus, R. B., Sheng, T. T. and Lin, P., J. Electrochem. Soc., 129 (1982) 1282.CrossRefGoogle Scholar
13. Irene, E. A., Tierney, E. and Dong, D. W., J. Electrochem. Soc., 127 (1980) 705.Google Scholar