Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:45:34.410Z Has data issue: false hasContentIssue false

Transmission Electron Microscopy Studies of Electrical Active GaAs/GaN Interface Obtained by Wafer Bonding

Published online by Cambridge University Press:  01 February 2011

J. Jasinski
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Z. Liliental-Weber
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
S. Estrada
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
E. Hu
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
Get access

Abstract

Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) studies of GaAs/GaN interfaces, obtained by direct wafer bonding, are presented. TEM observations show that most of the interface area was well bonded. A thin oxide layer, confirmed by EDX, was present at the interface in the well-bonded regions. Plan-view TEM studies showed the presence of two dislocation networks in such regions. They formed to accommodate: (1) tilt between bonded crystals and (2) strain, which appeared during sample cooling due to mismatch in thermal expansion coefficients. Asymmetrical, often elongated, cavities, formed on the GaAs side, were present at the interface between the well-bonded regions. It was shown by EDX that the walls of these cavities are covered with native oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Benamara, M., Rocher, A., Laporte, A., Sarrabayrousse, G., Lescouzeres, L., PeyreLavigne, A., Fnaiech, M., and Claverie, A., Mater. Res. Soc. Symp. Proc. 378, 863 (1995)Google Scholar
2. Zhou, Y. C., Zhu, Z. H., Crouse, D., and Lo, Y. H., Appl. Phys. Lett. 3, 2337 (1998)Google Scholar
3. Patriarche, G., Jeannes, F., Oudar, J.-L., Glas, F., J. Appl. Phys. 82, 4892 (1997)Google Scholar
4. Sagalowicz, L., Rudra, A., Kapon, E., Hammar, M., Salomonsson, F., Black, A., Jouneau, P.-H., Wipijewski, T., J. Appl. Phys. 87, 4135 (2000)Google Scholar
5. Jin-Phillipp, N. Y., Sigle, W., Black, A., Babic, D., Bowers, J.E., Hu, E.L., Ruhle, M., J. Appl. Phys. 89, 1017 (2001)Google Scholar
6. Sink, R. K., Keller, S., Keller, B. P., Babic, D. I., Holmes, A. L., Kapolnek, D., DenBaars, S. P., and Bowers, J. E., Wu, X. H. and Speck, J. S., Appl. Phys. Lett. 68, 2147 (1996)Google Scholar
7. Kopperschmidt, P., Kaestner, G., Senz, S., Hesse, D., Goesele, U., Appl. Phys. A 64, 533 (1997)Google Scholar
8. Senz, St., Kopperschmidt, P., Kastner, G., Hesse, D., J. Mater. Sci. 33, 2073 (1998)Google Scholar
9. Monteith, S. E., Carthy, L. S. Mc, Mathis-Yu, S. K., Marchand, H., Mishra, U. K., Speck, J. S., Baars, S. P. Den, and Hu, E. L., “Wafer Fusion of GaAs/GaN Heterostructures”, presented at the 42nd Electronic Materials Conference, Denver, CO, 2000 (unpublished).Google Scholar
10. Monteith, S. E., Jasinski, J., Huntington, A., Stonas, A., Coldren, L., Baars, S. Den, Liliental-Weber, Z., Mishra, U., and Hu, E., ”GaAs/GaN Diodes Wafer-Fused at 500°C”, presented at the 43rd Electronic Materials Conference, Notre Dame, IN, 2001 (unpublished).Google Scholar
11. Monteith, S.M., Zhang, L., Margalith, T., Coldren, L., DenBaars, S., Mishra, U., Hu, E. (to be published).Google Scholar
12. Touloukian, Y.S., Kirby, R.K., Taylor, R.E., Lee, T.Y.R., “Thermal Expansion - Nonmetallic Solids”, Plenum, New York, 1977.Google Scholar
13. Kinoshita, H, Otani, S, Kamiyama, S, Amano, H, Akasaki, I, Suda, J, Matsunami, H, Jpn. J. Appl. Phys., 40, L1280 (2001).Google Scholar