Published online by Cambridge University Press: 10 February 2011
In order to obtain stable thin-film silicon devices we are conducting research on the implementation of hot-wire CVD amorphous and polycrystalline silicon in thin-film transistors, TFTs. We present results on TFTs with a profiled active layer (deposited at ≥9 Å/s), and correlate the electrical properties with the structure of the silicon matrix at the insulator/semiconductor interface, as determined with cross-sectional transmission electron microscopy. Devices prepared with an appropriate H2 dilution of SiH4 show cone-shaped crystalline inclusions. These crystals start at the interface in some cases, and in others exhibit an 80nm incubation layer prior to nucleation. The crystals in the TFrs with the incubation layer are not cone-shaped, but are rounded off. The hot-wire CVD deposited devices exhibit a high field-effect mobility up to 1.5 cm2V−1s−1. Also, these devices have superior stability upon continuous gate bias stress, as compared to conventional glow-discharge a-Si:H TFTs. We ascribe this to a combination of enhanced structural order of the silicon and a low hydrogen content.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.