Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T00:27:31.356Z Has data issue: false hasContentIssue false

Toxicity Study Needs for Quantum Dots and Nanoparticles in PV Fabrication

Published online by Cambridge University Press:  17 February 2014

Bahareh Sadeghimakki
Affiliation:
Centre for Advanced Photovoltaic Devices and Systems (CAPDS), Electrical and Computer Engineering Department, University of Waterloo, Waterloo, Ontario, Canada.
Siva Sivoththaman
Affiliation:
Centre for Advanced Photovoltaic Devices and Systems (CAPDS), Electrical and Computer Engineering Department, University of Waterloo, Waterloo, Ontario, Canada.
Get access

Abstract

Quantum dots (QDs) and nanoparticles (NPs) with tunable optoelectronic properties are actively researched for photovoltaic (PV) fabrication and will enter mainstream manufacturing in the future. The toxicology, health and safety of these new materials are not fully explored yet. In this work, the toxicological potencies of nanomaterials in PV fabrication, study needs, and metrology requirements are presented. Practical processes involving QDs and NPs developed for PV fabrication are presented. Experimental evidence on the presence of airborne nanomaterials in the condensates collected from process environment underlines the need for in-depth toxicity studies before these technologies scale up to the PV manufacturing stage. Required technical capabilities for the metrology tools to accurately detect, identify, and quantify QDs and NPs in PV manufacturing requirements are also presented based on the potential range of nanomaterials to be used in PV technology. These studies are key to develop safe techniques and processing environments, and to establish safety guidelines for PV fabrication with nanomaterials.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sadeghimakki, B., et al. ., Proc. Mater. Res. Soc. Symp. 1322, 39 (2011)CrossRefGoogle Scholar
Nozik, A. J., Physica E. 14 (1–2), 115 (2002)CrossRefGoogle Scholar
Ross, R. T. and Nozik, A. J., J. Appl. Phys. 53 ( 5), 3813 (1982)CrossRefGoogle Scholar
Trupke, T., Green, M.A., and Würfel, P., J. Appl. Phys. 92(3), 1668 (2002)CrossRefGoogle Scholar
Pelley, J. L., Daar, A. S. and Saner, M. A., Toxicol. Sci. 112(2), 276 (2009)CrossRefGoogle Scholar
Zhu, H., Prakash, A. and Benoit, D. N., Nanotechnology 21, 255604 (2010)CrossRefGoogle Scholar
Darbandi, M., Thomann, R., and Nann, T., Chem. Mater. 17(23), 5720 (2005)CrossRefGoogle Scholar
Su, Y., He, Y., Lu, H., Sai, L., Li, Q., Li, W., Wang, L., et al. ., Biomaterials 30, 19 (2009)CrossRefGoogle Scholar
Wang, L., Nagesha, D. K., Selvarasah, S., et al. ., J. Nanobiotechnol. 6, 11 (2008)CrossRefGoogle Scholar
Ryman-Rasmussen, J. P., Riviere, J. E., et al. ., J. Invest. Dermatol 127, 143 (2007)CrossRefGoogle Scholar
Tang, M., Xing, T., Zeng, J., Wang, H., Li, C., et al. ., Environ. Health Perspect. 116, 915 (2008)CrossRefGoogle Scholar
Zhang, Y., Chen, W., Zhang, J., Liu, J., et al. ., J. Nanosci. Nanotechnol. 7, 497 (2007)CrossRefGoogle Scholar
Zimmer, J. P., Kim, S. W., Ohnishi, S., Tanaka, E., et al. ., J. Am. Chem. Soc. 128, 2526 (2006)CrossRefGoogle Scholar
Derfus, A. M., Chan, W. C. W., and Bhatia, S. N., Nano Lett. 4, 11(2004)CrossRefGoogle Scholar
Sadeghimakki, B., et al. ., Proc. 35th IEEE PVSC 978-1-4244-5892-9, 002955 (2010)Google Scholar
Janfeshan, B., Sadeghimakki, B., et al. ., Proc. of SPIE 8620, 86201Z–1(2013)CrossRefGoogle Scholar
Sadeghimakki, B., et al. ., Proc. 34th IEEE PVSC 978-1-4244-2950-9, 002138 (2009)Google Scholar