Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:19:37.402Z Has data issue: false hasContentIssue false

Towards the Reduction of Optical Losses in Transition Metal-Based Nanomaterials

Published online by Cambridge University Press:  11 March 2011

A. V. Gavrilenko
Affiliation:
Center for Materials Research, Norfolk State University, 700 Park Ave, Norfolk, VA 23504
C. A. Gonder
Affiliation:
Center for Materials Research, Norfolk State University, 700 Park Ave, Norfolk, VA 23504
D. J. Baker
Affiliation:
Center for Materials Research, Norfolk State University, 700 Park Ave, Norfolk, VA 23504
V. I. Gavrilenko
Affiliation:
Center for Materials Research, Norfolk State University, 700 Park Ave, Norfolk, VA 23504
Get access

Abstract

Equilibrium geometries and cohesion energies of Ag0.94Cd0.06, Ag0.94In0.06, Au0.94Cd0.06, and Au0.94In0.06 solid alloys have been studied from the first principles within the Density Functional Theory using ab initio pseudopotentials. Equilibrium geometries are obtained by total energy minimization method using the Local Density Approximation and Generalized Gradient Approximation methods. Optical functions are calculated within the independent particles picture. We report essentially different behavior of Cd and In impurity atoms in Au- and Ag-based alloys: the aggregated (or quasi aggregated) phases in In-containing alloys are expected in contrast to the alloys with Cd atom where homogeneous impurity distribution over the bulk should dominate. Study of optical spectra in Ag0.94Cd0.06 and Au0.94Cd0.06 alloys indicate that optical losses in visible and near ultraviolet spectral range remarkably increase at bigger Cd concentrations. In ultraviolet spectral region redistribution of optical oscillator strengths results in both increase and decrease of optical losses in selected spectral regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maier, S. A., Plasmonics: Fundamentals and Applications (Springer, New York, 2007).Google Scholar
2. Pendry, J. B., Schurig, D., and Smith, D. R., Science 312, 1780 (2006).Google Scholar
3. Shalaev, V. M., Nature Photonics 1, 41 (2007).Google Scholar
4. Bobb, D. A., Zhu, G., Mayy, M., Gavrilenko, A. V., Mead, P., Gavrilenko, V. I., and Noginov, M. A., Appl. Phys. Lett 95, 151102 (2009).Google Scholar
5. Noginov, M. A., Zhu, G., Mayy, M., Ritzo, B. A., Noginova, N., and Podolskiy, V. A., Phys. Rev. Lett 101, 226806 (2008).Google Scholar
6. Pinchuk, A., Kreibig, U., and Hilger, A., Surf. Sci. 557, 269 (2004).Google Scholar
7. Material Studio (Accelrys Inc., 2007), v. 4.2 ed. Google Scholar
8. Kresse, G. and Furthmu¨ller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
9. Fuchs, M. and Scheffler, M., Comp. Phys. Commun. 119, 67 (1999).Google Scholar
10. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
11. Piccinin, S., Stampfl, C., and Scheffler, M., Surf. Sci. 603, 1467 (2009).Google Scholar
12. Gavrilenko, A. V., McKinney, C. S., and Gavrilenko, V. I., Phys. Rev. B 82, 155426 (2010).Google Scholar
13. Downer, M. C., Mendoza, B. S., and Gavrilenko, V. I., Surf. Interface Anal. 31, 966 (2001).Google Scholar
14. Gavrilenko, V. I., in Tutorials in Complex Photonic Media, edited by Dewar, G., McCall, M. W., Noginov, M. A., and Zheludev, N. (SPIE Press, 2009), p. Ch.15.Google Scholar
15. Gavrilenko, V. I. and Bechstedt, F., Phys. Rev. B 55, 4343 (1997).Google Scholar
16. Hamann, D. R., Schluter, M., and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
17. Monachesi, P., Palummo, M., Sole, R. D., Ahuja, R., and Eriksson, O., Phys. Rev. B 64, 115421 (2001).Google Scholar
18. Johnson, P. B. and Christy, R. W., Phys. Rev. B 6, 4370 (1972).Google Scholar