Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T02:37:06.305Z Has data issue: false hasContentIssue false

Tin Oxide Based Transparent Ferromagnetic Semiconductor Thin Films by Spray Pyrolysis

Published online by Cambridge University Press:  01 February 2011

Subhash Chand Kashyap
Affiliation:
skashyap@physics.iitd.ac.in, Indian Institute of Technology, Department of physics, Deparment of Physics, IIT Delhi, Hauz Khas, New Delhi, India, New Delhi, DELHI, 110016, India, +91-11-26591346, +91-11-26581114
Kalon Gopinadhan
Affiliation:
gopinadhank@gmail.com, Indian Institute of Technology Delhi, Thin Film Laboratory, Department of Physics, Hauz Khas, New Delhi, 110016, India
Sujeet Chaudhary
Affiliation:
sujeetc@physics.iitd.ac.in, Indian Institute of Technology Delhi, Thin Film Laboratory, Department of Physics, Hauz Khas, New Delhi, 110016, India
Dinesh K. Pandya
Affiliation:
dkpandya@physics.iitd.ac.in, Indian Institute of Technology Delhi, Thin Film Laboratory, Department of Physics, Hauz Khas, New Delhi, 110016, India
Get access

Abstract

Cobalt- and manganese-incorporated SnO2 thin films exhibiting room temperature ferromagnetism have been prepared by spray pyrolysis technique. Analysis of structural, magnetic and electrical properties of Sn1−xCoxO2−δ thin films indicates that the origin of ferromagnetism, seen for x<0.125, lies in the polarization of free carriers, leading to the necessary exchange interaction. The films exhibit a Curie temperature > 500K. The XRD study indicates that Sn1−xCoxO2−δ films with x<0.125 is single phasic with no evidence of any Co clusters or magnetic oxides, which supports the intrinsic nature of the ferromagnetism. The electrical transport studies indicate that extra electrons are generated on Co-incorporation in the SnO2 lattice. In the case of Sn1−xMnxO2·δ films, ferromagnetism is observed in a narrow range of manganese (0.075≤x≤0.10) with an associated increase in carrier concentration. The detailed analysis of various properties suggests that Mn-ions have been incorporated in the SnO2 lattice, and there is absence of any Mn-clusters, Mn-related secondary phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, S. G., Li, T.., Gu, B. X., Du, Y. W., Sung, H. Y., Hung, S. T., and Wong, C. Y., Appl. Phys. Lett. 83, 3746 (2003).Google Scholar
2. Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Guillen, J. M. O., Johansson, B., and Gehring, G. A., Nat. Mater. 2, 673 (2003).Google Scholar
3. Bhatti, K. P., Chaudhary, S., Pandya, D. K., and Kashyap, S. C., Solid State Commun. 136, 384 (2005).Google Scholar
4. Bhatti, K. P., Chaudhary, S., Pandya, D. K., Kashyap, S. C., Solid State Comm. 140, 23 (2006).Google Scholar
5. Bhatti, K. P., Kundu, S., Chaudhary, S., Kashyap, S. C. and Pandya, D. K., J. Phys. D 39, 4909 (2006).Google Scholar
6. Philip, J., Theoropoulou, N., Berera, G., Moodera, J. S., and Satpati, B., Appl. Phys. Lett. 85, 777 (2004).Google Scholar
7. Matsumoto, Y., Murakami, M., Shono, T., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, Shin-ya, and Koinuma, H., Science 291, 854 (2001).Google Scholar
8. Coey, J. M. D., Douvalis, A. P., Fitzgerald, C. B., and Venkatesan, M., Appl. Phys. Lett. 84, 1332 (2004).Google Scholar
9. Ogale, S. B., Choudhary, R. J., Buban, J. P., Lofland, S. E., Shinde, S. R., Kale, S. N., Kulkarni, V. N., Higgins, J., Lanci, C., Simpson, J. R., Browning, N. D., Sarma, S. Das, Drew, H. D., Greene, R. L., and Venkatesan, T., Phys. Rev. Lett. 91, 077205 (2003).Google Scholar
10. Gopinadhan, K., Pandya, D. K., Kashyap, S. C., and Chaudhary, S., J. Appl. Phys. 99, 126106 (2006).Google Scholar
11. Gopinadhan, K., Pandya, D. K., Kashyap, S. C., and Chaudhary, S., J. Phys: Cond. Matt., 2006 (In Press)Google Scholar
12. Reed, M. L., El-Masny, N. A., Stadelmaier, H. H., Ritums, M. K., Reed, M. J., Parker, C. A., Roberts, J. C., and Bedaier, S. M., Appl. Phys. Lett. 79, 3473 (2001).Google Scholar
13. Shon, Y., Jeon, H. C., Park, Y. S., Lee, W. C., Lee, S. J., Kim, D. Y., Kin, H. C., Kang, T. W., Park, Y. J., Yoon, C. H., and Chung, K. S., Appl. Phys. Lett. 85, 1736 (2004).Google Scholar
14. Chopra, K. L., Major, S., and Pandya, D. K., Thin Solid Films 102, 1 (1983).Google Scholar
15. Park, W. K., Ortega-Hertogs, J., and Moodera, J. S., J. Appl. Phys. 91, 8093 (2002).Google Scholar
16. Yoshikawa, H., Hayashida, K., Kozuka, Y., Horiguchi, A., Awaga, A., Bandow, S., and Lijima, S., Appl. Phys. Lett. 85, 5287 (2004).Google Scholar
17. Shannon, R. D., Acta. Crystallogr. A 32, 751 (1976).Google Scholar
18. Fitzgerald, C. B., Venkatesan, M., Douvalis, A. P., Huber, S., Coey, J. M. D., and Bakas, T., J. Appl. Phys. 95, 7390 (2004).Google Scholar