Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:55:46.702Z Has data issue: false hasContentIssue false

Three-Dimensional Nanoarchitectured Transparent Conducting Oxides: Synthesis, Characterization and Photovoltaic Applications

Published online by Cambridge University Press:  13 May 2013

Zhenzhen Yang
Affiliation:
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
Tao Xu*
Affiliation:
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
*
*Email: txu@niu.edu
Get access

Abstract

The photovoltaic materials in solar cells take multiple tasks including absorbing lights, separating the light-induced electron-hole pairs, and consequently transport charges to the corresponding metallic electrodes. These tasks, however, are often mutually conflicting. In particular, a thick PV layer is desired to absorb enough light for creating sufficient light-induced charges, while a thin PV layer is also desired to shorten the charge transport path length insider the PV layer in order to suppress recombination. Using dye-sensitized solar cells as an exploratory platform, this dilemma is mitigated using a non-traditional 3-dimensional (3-D) highly doped fluorinated SnO2 (FTO, core)-TiO2(shell) nanostructured photoanodes. The FTO core serves as conductive core for low-resistance and drift-assisted electron extraction. The thin, conformal and low-doped TiO2 shell layer is coated by atomic layer deposition, which provides a large area for anchoring dyes and maintains a large resistance against recombination.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Grätzel, M. Inorg. Chem. 2005, 44, 6841.CrossRefGoogle Scholar
Junghänel, M.; Tributsch, H. J. Phys. Chem. B 2005, 109, 22876.CrossRefGoogle Scholar
Kopidakis, N.; Park, E. A. S.-G.; van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2000, 104, 3930.CrossRefGoogle Scholar
Gregg, B. A.; Hanna, M. C. J. Appl. Phys. 2003, 93, 3605.CrossRefGoogle Scholar
Fu, D.; Zou, J.; Wang, K.; Zhang, R.; Yu, D.; Wu, J. Nano Lett. 2011, 11, 3809.CrossRefGoogle Scholar
Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.CrossRefGoogle Scholar
Martinson, A. B. F.; Goes, M. S.; Fabregat-Santiago, F.; Bisquert, J.; Pellin, M. J.; Hupp, J. T. J. Phys. Chem. A 2009, 113, 4015.CrossRefGoogle Scholar
Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2005, 109, 7392.CrossRefGoogle Scholar
Peter, L. Acc. Chem. Res. 2009, 42, 1839.CrossRefGoogle Scholar
Wang, Q.; Ito, S.; Grätzel, M.; Fabregat-Santiago, F.; Mora-Seró, I.; Bisquert, J.; Bessho, T.; Imai, H. J. Phys. Chem. B 2006, 110, 25210.CrossRefGoogle Scholar
Hamann, T. W.; Jensen, R. A.; Martinson, A. B. F.; van Ryswyk, H.; Hupp, J. T. Energy Environ. Sci. 2008, 1, 66.CrossRefGoogle Scholar
Spokoyny, A. M.; Li, T. C.; Farha, O. K.; Machan, C. W.; She, C.; Stern, C. L.; Marks, T. J.; Hupp, J. T.; Mirkin, C. A. Angew. Chem. Int. Ed. 2010, 49, 5339.CrossRefGoogle Scholar
Peter, L. M. Phys. Chem. Chem. Phys 2007, 9, 2630.CrossRefGoogle Scholar
Wu, H. H., ; Carney, L., ; Ruan, T., ; Kong, Z., ; Yu, D., ; Yao, Z., ; Cha, Y., ; Zhu, J. J., ; Fan, J., ; Cui, Y, S.. J. Am. Chem. Soc. 2011, 133, 27.CrossRefGoogle Scholar
Calnan, S. T., A. N. Thin Solid Films 2010, 518, 1839.CrossRefGoogle Scholar
Wang, Y.; Brezesinski, T.; Antonietti, M.; Smarsly, B. ACS Nano 2009, 3, 1373.CrossRefGoogle Scholar
Yang, Z.; Gao, S.; Li, T.; Liu, F.; Ren, Y.; Xu, T. ACS Appl. Mater. & Interfaces 2012, 4, 4419.CrossRefGoogle Scholar
Ramasamy, E.; Lee, J. J. Phys. Chem. C 2010, 114, 22032.CrossRefGoogle Scholar
Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. ACS Nano 2011, 5, 5158.CrossRefGoogle Scholar
Chappel, S.; Chen, S.-G.; Zaban, A. Langmuir 2002, 18, 3336.CrossRefGoogle Scholar
Prasittichai, C.; Hupp, J. T. J. Phys. Chem. Lett. 2010, 1, 1611.CrossRefGoogle Scholar
Dou, X.; Sabba, D.; Mathews, N.; Wong, L. H.; Lam, Y. M.; Mhaisalkar, S. Chem. Mater. 2011, 23, 3938.CrossRefGoogle Scholar
Gubbala, S.; Chakrapani, V.; Kumar, V.; Sunkara, M. K. Adv. Funct. Mater. 2008, 18, 2411.CrossRefGoogle Scholar
Peter, L. M. J. Phys. Chem. C 2007, 111, 6601.CrossRefGoogle Scholar
Klein, A.; Körber, C.; Wachau, A.; Säuberlich, F.; Gassenbauer, Y.; Harvey, S. P.; Proffit, D. E.; Mason, T. O. Materials 2010, 3, 4892.CrossRefGoogle Scholar
Xu, J.; Huang, S.; Wang, Z. Solid State Comm. 2009, 149, 527.CrossRefGoogle Scholar
Wu, H.; Hu, L.; Carney, T.; Ruan, Z.; Kong, D.; Yu, Z.; Yao, Y.; Cha, J. J.; Zhu, J.; Fan, S.; Cui, Y. J. Am. Chem. Soc. 2011, 133, 27.CrossRefGoogle Scholar
Turrión, M.; Macht, B.; Tributsch, H.; Salvador, P. J. Phys. Chem. B 2001, 105, 9732.CrossRefGoogle Scholar
Munnix, S.; Schmeits, M. Phys. Rev. B 1986, 33, 4136.CrossRefGoogle Scholar
González-Pedro, V.; Xu, X.; Mora-Seró, I. nBisquert, J. ACS Nano 2010, 4, 5783.CrossRefGoogle Scholar
Fabregat-Santiago, F.; Garcia-Belmonte, G.; Mora-Seró, I.; Bisquert, J. Phys. Chem. Chem. Phys. 2011, 13, 35.CrossRefGoogle Scholar
Wang, Q.; Ito, S.; Gratzel, M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J.; Bessho, T.; Imai, H. J. Phys. Chem. B 2006, 110, 25210.CrossRefGoogle Scholar