Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:06:05.332Z Has data issue: false hasContentIssue false

Third-Order Optical Nonlinearity in a Polymer Composite

Published online by Cambridge University Press:  21 February 2011

K. M. White
Affiliation:
Science Research Laboratory, 3M Company, St. Paul, MN 55144
R. E. Harelstad
Affiliation:
Science Research Laboratory, 3M Company, St. Paul, MN 55144
C. V. Francis
Affiliation:
Science Research Laboratory, 3M Company, St. Paul, MN 55144
D. J. Gerbi
Affiliation:
Science Research Laboratory, 3M Company, St. Paul, MN 55144
J. Stevens
Affiliation:
Computational Science Center, 3M Company, St. Paul, MN 55144
P. C. Leung
Affiliation:
Computational Science Center, 3M Company, St. Paul, MN 55144
Get access

Abstract

Third-order optical nonlinearity in organic materials has generally been sought from molecules and polymers having extended i-electron delocalization in conjugated bonding schemes. In an alternative approach, we have investigated the third-order optical response of a polymeric composite containing charge transfer complexes in which the nonlinearity originates from intermolecular electron delocalization between π-electron clouds in charge transfer stacks. The material, which is composed of a polymer having electrondonating pendant side groups that complex with dopant electron-acceptor molecules, has been processed into an optically clear thin film. Nonlinear characterization of the film by means of third-harmonic generation suggests enhancement of the third-order response arising from charge transfer interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stegeman, G. I., Seaton, C. T., and Zanoni, R., Thin Solid Films 152, 231 (1987).Google Scholar
2. Drury, M. R., Solid State Commun. 68, 417 (1988).Google Scholar
3. Sauteret, C., Hermann, J. P., Frey, R., Pradere, F., Ducuing, J., Baughman, R. H., and Chance, R. R., Phys. Rev. Lett. 36, 956 (1976).Google Scholar
4. Stevens, J., Leung, P. C., Chou, S. H., Freeman, A. J., and Wimmer, E., in Multifunctional Materials, edited by Gunshor, R. L. (Proceedings SPIE 878, Los Angeles, CA, January, 1988) pp. 131135.Google Scholar
5. Huggard, P. G., Blau, W., and Schweitzer, D., Appl. Phys. Lett. 51, 2183 (1987).Google Scholar
6. Gotoh, T., Kondoh, T., Egawa, K., and Kubodera, K., J. Opt. Soc. Am. B 6, 703 (1989).Google Scholar
7. Prasad, P. N., Swiatkiewicz, J., and Pfleger, J., Mol. Cryst. Liq. Cryst. 160, 53 (1988).Google Scholar
8. Tanikawa, K., Ishizuka, T., Suzuki, K., Kusabayashi, S., and Mikawa, H., Bull. Chem. Soc. Jpn. 41, 2719 (1968).Google Scholar
9. Kuroda, H., Ikemoto, I., Akamatu, H., Bull. Chem. Soc. Jpn. 39, 1842 (1966).Google Scholar
10. Buchalter, B. and Meredith, G. R., Appl. Opt. 21, 3221 (1982).Google Scholar
11. Nedler, J. A. and Mead, R., Comput. J. 7, 308 (1965).Google Scholar
12. Kajzar, F. and Messier, J., Polym. J. 19, 275 (1987).Google Scholar
13. GAUSSIAN86, Frisch, M. J., Binkley, J. S., Schlegel, H. B., Raghavachari, K., Melius, C. F., Martin, R. L., Stewart, J. J. P., Bobrowicz, F. W., Rohlfing, C. M., Kahn, L. R., Defrees, D. J., Seeger, R., Whiteside, R. A., Fox, D. J., Fleuder, E. M., and Pople, J. A., Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh, PA, 1984.Google Scholar