Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T23:53:40.833Z Has data issue: false hasContentIssue false

Thiol coupling based synthesis of temperature-sensitive polymer–peptide conjugates with controlled architecture.

Published online by Cambridge University Press:  18 May 2012

Jean-Baptiste Guilbaud
Affiliation:
School of Materials, The University of Manchester, Manchester, M1 7HS, UK
Aline F. Miller
Affiliation:
CEAS, The University of Manchester, Manchester, M60 1QD, UK
Alberto Saiani
Affiliation:
School of Materials, The University of Manchester, Manchester, M1 7HS, UK
Get access

Abstract

A synthetic strategy to couple selectively an ionic complementary thiol modified octapeptide, that is able to gel at low temperature, to the thermoresponsive polymer poly(N-isopropylacrylamide) (pNIPAAm) with controlled molecular weight and narrow polydispersity is described. The polymer was synthesized by atom transfer radical polymerization (ATRP) affording halogen functionalized chain ends. This allowed subsequent coupling to a thiol terminated ionic complementary octapeptide via nucleophile substitution. Results indicated that the peptide was covalently attached to the polymer and that both the coil-globule phase transition of pNIPAAm and the gelation properties of the peptide were retained in the conjugated product. This method provides a versatile route for the synthesis of a range of bioconjugate materials with controlled architecture and dual self-assembling and thermoresponsive behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mei, Y., Beers, K. L., Byrd, H. C. M., Vanderhart, D. L. and Washburn, N. R., J. Am. Chem. Soc. 126 (11), 34723476 (2004).CrossRefGoogle Scholar
2.Klok, H. A., Vandermeulen, G. W. M., Nuhn, H., Rosler, A., Hamley, I. W., Castelletto, V., Xu, H. and Sheiko, S. S., Faraday Discuss. 128, 2941 (2005).CrossRefGoogle Scholar
3.Stoica, F., Alexander, C., Tirelli, N., Miller, A. F. and Saiani, A., Chem. Commun. (37), 44334435 (2008).CrossRefGoogle Scholar
4.Matyjaszewski, K. and Xia, J. H., Chem. Rev. 101 (9), 29212990 (2001).CrossRefGoogle Scholar
5.Sarin, V. K., Kent, S. B. H., Tam, J. P. and Merrifield, R. B., Anal. Biochem. 117 (1), 147157 (1981).CrossRefGoogle Scholar
6.Boothroyd, S., Saiani, A. and Miller, A. F., Macromol. Symp. 273, 139145 (2008).CrossRefGoogle Scholar
7.Saiani, A., Mohammed, A., Frielinghaus, H., Collins, R., Hodson, N., Kielty, C. M., Sherratt, M. J. and Miller, A. F., Soft Matter 5 (1), 193202 (2009).CrossRefGoogle Scholar
8.Xia, Y., Yin, X. C., Burke, N. A. D. and Stover, H. D. H., Macromolecules 38 (14), 59375943 (2005).CrossRefGoogle Scholar
9.Ye, J. D. and Narain, R., J. Phys. Chem. B 113 (3), 676681 (2009).CrossRefGoogle Scholar
10.Zhu, H. H., Yalcin, T. and Li, L., J. Am. Soc. Mass Spectrom. 9 (4), 275281 (1998).CrossRefGoogle Scholar
11.Lu, X. J., Zhang, L. F., Meng, L. Z. and Liu, Y. H., Polym. Bull. 59 (2), 195206 (2007).CrossRefGoogle Scholar
12.Couet, J. and Biesalski, M., Macromolecules 39 (21), 72587268 (2006).CrossRefGoogle Scholar
13.Merrifield, R. B., Federation Proceedings 21 (2), 412-& (1962).Google Scholar
14.Merrifield, R. B., J. Am. Chem. Soc. 85 (14), 2149-& (1963).CrossRefGoogle Scholar
15.Maslovskis, A., Saiani, A. and Miller, A. F., Soft Matter, advance article (2011).Google Scholar