No CrossRef data available.
Published online by Cambridge University Press: 11 March 2011
Thin nano- to microcrystalline diamond (N/MCD) films were deposited on silicon substrates using plasma enhanced microwave chemical vapor deposition. Selected layers were covered with a thin metal layer of Cr to enhance their optical absorption characteristics for photothermal and photoacoustic experiments. A heterodyne diffraction method was used to investigate the thermoelastic signatures of the N/MCD layers. While the dispersion of surface acoustic waves turned out to be difficult to determine due to high optical scattering from the diamond crystallites, it was found that a diamond film of ~ 2 μm thick is enhancing the thermal diffusion along the surface.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.