Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-02-09T02:52:17.325Z Has data issue: false hasContentIssue false

Thin Film Transistors Made of Polysilicon Crystallized at 950°C on Steel Substrate

Published online by Cambridge University Press:  17 March 2011

Ming Wu
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A
Sigurd Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A
Get access

Abstract

We fabricated top-gate polycrystalline silicon thin film transistors on steel foil substrates with two processes: (1) Directly deposited n+ source/drain layers. (2) Ion-implanted n+ source/drains. The steel substrates enable reducing the crystallization time of amorphous silicon to polysilicon from 4 hours at 600°C to 20 seconds at 900°C. Thin film transistors were made from polysilicon channel material crystallized at 950°C for either 20 seconds or 20 minutes. The steel foil substrates were passivated with SiO2. The best thin film transistors to date have mobilities of above 30cm2/Vs in both the linear and saturated regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Im, J.S. and Sposili, R.S., Mat. Res. Soc. Bulletin, 39 (March, 1996)Google Scholar
2. Credelle, T. L., Conference Record of 1988 International Display Research Conference, IEEE, 208 (1988)Google Scholar
3. Mei, P., Boyce, J.B., Fork, D.K., Anderson, G., Ho, J., Lu, J., Hack, M. and Lujan, R., Mat. Res. Soc. Symp. Proc. 507, 3 (1998)Google Scholar
4. Ditizio, R.A., Liu, G. and Fonash, S.J., Appl. Phys. Lett., 56, 1140 (1990)Google Scholar
5. Hatalis, M.K. and Greve, D.W., J. Appl. Phys. 63, 2260 (1988)Google Scholar
6. Kakkad, R., Smith, J., Lau, W.S. and Fonash, S.J., J. Appl. Phys. 65, 2069 (1989)Google Scholar
7. Sameshima, T., Usui, S. and Sekiya, M., IEEE Electron Device Lett. 7, 276 (1986)Google Scholar
8. Moffat, D.M., Mat. Res. Soc. Symp. Proc. 377, 871 (1995)Google Scholar
9. Nemanich, R.J., Tsai, C.C., Thompson, M.J. and Sigmon, T.W., J. Vac. Sci. Technol. 19, 685 (1981)Google Scholar
10. Yin, A. and Fonash, S.J., J. Vac. Sci. Technol. A 12, 1237 (1994); S.J. Fonash and A. Yin, “Enhanced crystallization of amorphous films,” U.S. Patent No. 5624873 (1995)Google Scholar
11. Pangal, K., Sturm, J.C. and Wagner, S., J. Appl. Phys. 85, 1900 (1999)Google Scholar
12. Theiss, S.D., Wagner, S., IEEE Electron Device Lett. 17, 578 (1996)Google Scholar
13. Ma, E.Y. and Wagner, S., Appl. Phys. Lett. 74, 2661 (1999)Google Scholar
14. Serikawa, T., Omata, F., IEEE Electron Device Lett. 20, 574 (1999)Google Scholar
15. Wu, M., Pangal, K., Sturm, J.C., and Wagner, Sigurd, Appl. Phys. Lett. 75, 2244 (1999)Google Scholar
16. Wu, M., Chen, Y., Pangal, K., Sturm, J.C. and Wagner, S., Inter. Conference on Amorphous and Microcrystalline Semiconductors, 1999; Journal of Non-crystalline Solids, in press.Google Scholar
17. Howell, R.S., Stewart, M., Karnik, S.V., Saha, S.K. and Hatalis, M.K., IEEE Electron Device Lett. 21, 70 (2000)Google Scholar
18. Dryer, T. E., Marshall, J. M., Pickin, W., Hepburn, A. R., and Davies, J.F., IEE Proc.-Circuits Devices Syst., 141, 15 (1994)Google Scholar
19. Pangal, K., Chen, Y., Sturm, J.C. and Wagner, S., Mat. Res. Soc. Symp. Proc. 507, 577 (1999)Google Scholar
20. Pangal, K., Sturm, J.C. and Wagner, S., Technical Digest of IEDM, 261 (1998)Google Scholar
21. Suo, Z., Ma, E.Y., Gleskova, H., and Wagner, S., Appl. Phys. Lett. 74, 1177 (1999)Google Scholar