No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
The hydrogen redistribution induced by the thermotransport in the modified Zircaloy-4 at temperatures likely to be encountered in nuclear power reactors (300-340°C) was investigated by means of steady state techniques. The modified Zircaloy-4 was prepared by changing the chemical compositions of Zircaloy-4, which is used widely as a nuclear fuel cladding material in pressurized water reactors. The change of Q for hydrogen, which describes the direction and magnitude of the thermotransport, with increasing hydrogen and oxygen concentrations was investigated in the modified Zircaloy-4. The value of Q for hydrogen in the modified Zircloy-4 alloys was found to be about 7 kcal/mol and it was not affected by hydrogen concentration in the hydrogen concentration range from 63.3 ppm to 91.7 ppm. While the value of Q for hydrogen decreased from 6.8 kcal/mol to 4.5 kcal/mol with increasing oxygen concentration from 0.2 wt% to 1.0 wt% and it was considered to be due to the trapping of hydrogen by oxygen. In addition, the hydrogen redistribution and Q in Zircaloy-4 was also investigated in order to compare the characteristics of thermotransport of hydrogen between Zircaloy-4 and modified Zircaloy-4. The hydrogen redistribution and Q in Zircaloy-4 showed the same results to those of the modified Zircaloy-4.