Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:34:53.290Z Has data issue: false hasContentIssue false

Thermophysical Properties of C70 Up to 1 GPa

Published online by Cambridge University Press:  15 February 2011

A. Lundin
Affiliation:
Department of Experimental Physics, Umeå University, S-90187 Umeå, Sweden
B. Sundqvist
Affiliation:
Department of Experimental Physics, Umeå University, S-90187 Umeå, Sweden
Get access

Abstract

We have measured the thermal conductivity λ and the compressibility of highly pure C70 in the range 90 to 450 K under pressures up to 1.2 GPa. Our results for the thermal conductivity indicate molecular rotation in C70 above 280 K at zero pressure. The phase boundary for the rotationally disordered phase has an approximate slope dT/dp = 75 K GPa−1. The bulk modulus B increases linearly with increasing p above 0.1 GPa, with an extrapolated zero pressure value at 296 K of B(0) = 8.3 GPa. Unexpected anomalies are found in both B and λ near 100 MPa, and we tentatively suggest that orientational ordering is responsible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. See, for example, reviews in Solid State Physics, edited by Ehrenreich, H. and Spaepen, F. (Academic Press, New York, 1994), Vol 48.Google Scholar
2. Lundin, A. and Sundqvist, B., Europhys. Lett. 27, 463 (1994).Google Scholar
3. Andersson, O., Soldatov, A., and Sundqvist, B., these Proceedings (1995).Google Scholar
4. Sundqvist, B., Andersson, O., Lundin, A., and Soldatov, A., Solid State Commun. 93, 109 (1995).Google Scholar
5. Hiåkansson, B., Andersson, P. and Bäckstrom, G., Rev. Sci. Instrum. 59, 2269 (1988).Google Scholar
6. Lundin, A., Bäckström, G., and Sundqvist, B., High Pressure Res. (in press).Google Scholar
7. Yu, R.C. et al. , Phys. Rev. Lett. 68, 2050 (1992).Google Scholar
8. Tea, N.H. et al. , Appl. Phys. A 56, 219 (1993).Google Scholar
9. Withers, J.C. et al. , J. Am. Ceram. Soc. 76, 754 (1993).Google Scholar
10. Hasselman, D.P.H., Donaldson, K.Y., Withers, J.C., and Loutfy, R.O., Carbon 31, 996 (1993).Google Scholar
11. Gugenberger, F. et al. , Phys. Rev. Lett. 69, 3774 (1992).Google Scholar
12. Matsuo, T. et al. , Solid State Commun. 83, 711 (1992).Google Scholar
13. Kawamura, H. et al. , J. Phys. Chem. Solids 54, 1675 (1993).Google Scholar
14. Christides, C., Thomas, I.M., Dennis, T.J.S., and Prassides, K., Europhys. Lett. 22, 611 (1993)Google Scholar
15. Sprik, M., Cheng, A., and Klein, M.L., Phys. Rev. Lett. 69, 1660 (1992).Google Scholar
16. Tendeloo, G. van et al. , Europhys. Lett. 21, 329 (1993).Google Scholar
17. Vaughan, G.B.M., Chem. Phys. 178, 599 (1993).Google Scholar
18. Grivei, E. et al. , Phys. Rev. B 47, 1705 (1993).Google Scholar
19. Forsman, H. and Andersson, P., J. Chem. Phys. 80, 2804 (1984).Google Scholar
20. Dennis, T.J.S. et al. , J. Phys. Chem. 97, 8553 (1993).Google Scholar
21. Ramasesha, S.K. et al. , Chem. Phys. Lett. 220, 203 (1994).Google Scholar
22. Sood, A.K. et al. , Philos. Mag. 70, 347 (1994).Google Scholar