Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T12:44:47.208Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Ag-Tl-Te Ternary System

Published online by Cambridge University Press:  01 February 2011

Ken Kurosaki
Affiliation:
kurosaki@nucl.eng.osaka-u.ac.jp, Osaka University, Division of Sustainable Energy and Environmental Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
Atsuko Kosuga
Affiliation:
kosuga@nucl.eng.osaka-u.ac.jp
Keita Goto
Affiliation:
k-goto@nucl.eng.osaka-u.ac.jp
Hiroaki Muta
Affiliation:
muta@nucl.eng.osaka-u.ac.jp
Shinsuke Yamanaka
Affiliation:
yamanaka@nucl.eng.osaka-u.ac.jp
Get access

Abstract

We have studied the thermoelectric properties of thallium compounds as novel thermoelectric materials. Especially, we focus on the Ag-Tl-Te ternary system, in which we found that Ag9TlTe5 exhibits an excellent thermoelectric figure of merit (ZT= 1.23) because of its extremely low thermal conductivity (around 0.22 Wm−1K−1). In this paper, we studied the thermal conductivity of four kinds of ternary silver thallium tellurides: AgTl3Te2, AgTlTe, Ag8Tl2Te5 and Ag9TlTe5, for which we found room temperature values of 0.39, 0.26, 0.14 and 0.21 Wm−1K−1, respectively. In order to understand the extremely low thermal conductivity, we performed an ultrasonic pulse echo measurement and evaluated some thermophysical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sharp, J. W., Sales, B. C., Mandrus, D., Chakoumakos, B. C., Appl. Phys. Lett. 74, 3794 (1999).Google Scholar
2. Wolfing, B., Kloc, C., Teubner, J., Bucher, E., Phys. Rev. Lett. 86, 4350 (2001).Google Scholar
3. Sales, B. C., Chakoumakos, B. C., Mandrus, D., Phys. Rev. B 61, 2475 (2000).Google Scholar
4. Kurosaki, K., Kosuga, A., Muta, H., Uno, M., Yamanaka, S., Appl. Phys. Lett. 87, 061919 (2005).Google Scholar
5. Abishov, V. T., Babanly, M. B., Kuliev, A. A., Russ. J. Inorg. Chem. 23, 1089 (1978).Google Scholar
6. Gawel, W., Zaleska, E., Terpilowski, J., J. Therm. Anal. 32, 227 (1987).Google Scholar
7. Brun, G., Boubali, M., Tedenac, J. -C., Ayral, R. M., Legendre, B., Thermochim. Acta 165, 93 (1990).Google Scholar
8. Klepp, K., Z. Fuer Naturforschung, Teil B: Anorganische Chemie, Organische Chemie 41B, 941 (1986).Google Scholar
9. Ayral-Marin, R. M., Liautard, B., Maurin, M., Tedenac, J. C., and Brun, G., J. Phys. Chem. Solids 49, 939 (1988).Google Scholar
10. Klepp, K., Z. Kristallogr. 162, 136 (1983).Google Scholar
11. Paccard, D., Paccard, L., Brun, G., Tedenac, J. -C., J. Alloys Compd. 184, 337 (1992).Google Scholar
12. Kurosaki, K., Uneda, H., Muta, H., Yamanaka, S., J. Alloys Compd. 395, 304 (2005).Google Scholar
13. CRC Handbook of Thermoelectrics, edited by Rowe, D. M. (CRC Press, New York, 1995).Google Scholar
14. Slack, G. A., Solid State Physics 34, 1 (1979).Google Scholar