Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:34:25.006Z Has data issue: false hasContentIssue false

Thermoelectric Power Studies on La2-xSrxNiO4-δ

Published online by Cambridge University Press:  15 February 2011

C.-J. Liu
Affiliation:
Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218
M. G. Sánchez
Affiliation:
Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218
D. O. Cowan
Affiliation:
Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218
Get access

Abstract

Thermoelectric power (S) has been measured on La2-xSrxNiO4-δ. Both nonmetallic (0.5 < × < 1.0) and metallic materials (1.1 ≤ × ≤ 1. 5) have been investigated between 80 and 310 K. The sign of S changes from negative to positive between 150 and 220 K for both metallic and nonmetallic samples. The position at which the curve crosses from negative to positive depends upon the composition (x). For example, when × = 1.15 (metallic conductivity) S changes from negative to positive at about 220 K. However, if this sample is heated to 1000° C under argon, the material becomes nonmetallic and the sign of S remains positive between 80 and 310 K. These results may indicate that more than one type of carrier is involved. The absolute magnitude of S at 300 K decreases with × for 0.5 ≤ × ≤ 1.15 and then increases with × for 1.15 ≤ × ≤ 1.5. In the heavily doped material where S becomes more negative with increasing doping, the thermoelectric power strongly indicates that electrons and not holes are the majority carriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rabeneau, A., Eckerlin, P., Acta Crystallorg. 11, 304 (1958).CrossRefGoogle Scholar
2. Müller-Buschbaum, Hk., Lehman, U. Z., Anorg. Allg. Chem. 447, 47 (1978).CrossRefGoogle Scholar
3. Rao, C. N. R., Buttrey, D. J., Otsuka, N., Ganguly, P., Garrison, H. R., Sandberg, C. J., Honig, J. M.,J. Solid State Chem. 51, 266 (1984).Google Scholar
4. Gopalakrishnan, J., Colsmann, G., Reuter, B., J. Solid State Chem. 22, 145 (1977).CrossRefGoogle Scholar
5. Liu, C. J., Mays, M. D., Cowan, D. O., Sánchez, M. G., to be published in Chemistry of Materials (1991).Google Scholar
6. Sreedhar, K., Rao, C. N. R., Mat. Res. Bull. 25, 1235 (1990).Google Scholar
7. Kakol, Z., Spalek, J., Honig, J. M., J. Solid State Chem. 79, 288 (1989).Google Scholar
8. Kakol, Z., Spalek, J., Honig, J. M., Solid State Commun. 71, 283 (1989).CrossRefGoogle Scholar
9. Nguyen, N., Studer, F., Reveau, B., J Phys. Chem. Solids 44, 389 (1983).Google Scholar
10. Tarascon, J. M., Greene, L. H., McKinnon, W. R., Hull, G. W., Geballe, T. H., Science 235, 1373 (1987).Google Scholar
11. Takagi, H., Tokura, Y., Uchida, S., in Mechanism of High Temperature Superconductivity, edited by Kamimura, H. and Oshiyama, A. (Springer-Verlag, New York, 1989), p. 238.Google Scholar
12. Odier, P., Nigara, Y., Coutures, J., Sayer, M., J. Solid State Chem. 56, 32 (1985).Google Scholar
13. Sayer, M., Odier, P., J. Solid State Chem. 67, 26 (1987).Google Scholar
14. Crespin, M., Bassat, J. M., Odier, P., Mouron, P., Choisnet, J., J. Solid State Chem. 84, 165 (1990).Google Scholar
15. Goodenough, J. B., Supercon. Sci. Technol. 3, 26 (1990).Google Scholar
16. Honig, J. M., Buttrey, D. J., in Localization and Metal-Insulator Transitions, edited by Fritzsche, H. and Adler, D. (Plenum Press, New York, 1985), p. 409.Google Scholar
17. Buttrey, D. J., Honig, J. M., Rao, C. N. R., J. Solid State Chem. 64, 287 (1986).Google Scholar
18. Ganguly, P., Rao, C. N. R., Mater. Res. Bull. 8, 405 (1973).Google Scholar
19. Cooper, J. R., Alavi, B., Zhou, L-W., Beyermann, W. P., Grüner, G., Phys. Rev. B 35, 8794 (1987).Google Scholar
20. Hundley, M. F., Zettl, A., Stacy, A., Cohen, M. L., Phys. Rev. B 35, 8800 (1987).Google Scholar
21. Uher, C., Kaiser, A. B., Gmelin, E., Walz, L., Phys. Rev. B 36, 5676 (1987).CrossRefGoogle Scholar
22. Gurvitch, M., Fiory, A. T., Phys. Rev. Lett. 59, 1337 (1987).Google Scholar
23. Sato, M., Sera, M., Shamoto, S., Onoda, M., Kondoh, S., Fukuda, K., Ando, Y., in Mechanism of High Temperature Superconductivity, edited by Kamimura, H. and Oshiyama, A. (Springer-Verlag, New York, 1989), p. 275; A. Zettl, A. Behrooz, G. Briceno, W. N. Creager, M. F. Crommie, S. Hoen, P. Pinsukanjana, Mechanism of High Temperature Superconductivity., p. 249.Google Scholar
24. Mott, N. F., Metal-Insulator Transition, 2nd ed. (Taylor and Francis, Philadelphia, 1990).Google Scholar
25. MacDonald, D. K. C., Thermoelectricity (Wiley, New York, 1962), p. 20.Google Scholar
26. Morelli, D. T., Uher, C., Phys. Rev. B 26, 6349 (1982).Google Scholar
27. Ayache, C., de Combarieu, A., Jay-Gerin, J. P., Phys. Rev. B 21, 2462 (1980).Google Scholar
28. Fritzsche, H., Solid State Commun. 9, 1813 (1971).Google Scholar