Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:26:52.605Z Has data issue: false hasContentIssue false

Thermodynamics of Co-Existing Phases at Phase Transitions in Fullerenes

Published online by Cambridge University Press:  15 February 2011

Eugene V. Stepanov*
Affiliation:
Russian Research Center “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182, Russia
Get access

Abstract

A thermodynamic model describing the co-existence of phases at orientational phase transition in solid fullerenes is developed. It is shown that for such a transition in fullerene C60 characterized by the comparatively low enthalpy, heterophase fluctuations can lead to the wide temperature region of the phase co-existence within about 30 K below the 260 K transition point, and mainly determine the anomalies of thermodynamic characteristics observed within that region. By comparison of the theoretical dependence obtained on this basis with the experimental data on the x-ray diffraction and heat capacity measurements for C60, the energetical characteristics of the heterophase cluster formation are evaluated. The relative contribution of homophase and heterophase fluctuations to breaking the orientational order is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heiney, P.A., J. Phys. Chem. Solids, 53, 1333 (1992).Google Scholar
2. Hebard, A.F., Annu. Rev. Mater. Sci., 23, 159 (1993).Google Scholar
3. Saito, R., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B, 49,2143 (1994).Google Scholar
4. Vaughan, G.B.M., Heiney, P.A., Cox, D.E. et al. , Chem. Phys., 178,599 (1993).Google Scholar
5. Eletskii, A.V. and Smirnov, B.M., Soy. Phys. - Uspekhi (Engl.Transl.), 163 (2), 33 (1993).Google Scholar
6. Tse, J.S., Klug, D.D., Wilkinson, D.A. et al. , Chem. Phys. Lett., 183, 387 (1991).Google Scholar
7. Kasatani, H., Terauchi, H., Hamanaka, Y. et al. , Phys.Rev. B, 47, 4022 (1993).Google Scholar
8. Heiney, P.A.H., Vaughan, G.B.M., Fisher, J.E. et al. , Phys. Rev. B, 45, 4544 (1993)Google Scholar
9. Samara, G.A., Hansen, L.V., Assink, R.A. et al. , Phys. Rev. B, 47,4756 (1993).Google Scholar
10. Harada, Y., Ohyams, T., Otsuka, E. et al. , J. Phys. Soc. Jap., 62 (5), 1427 (1993).Google Scholar
11. Gugenberger, F., Heid, R., Meingast, C. et al. , Phys. Rev. Lett., 69, 3774 (1992).Google Scholar
12. McGhie, A.R., Fisher, J.E., Heiney, P.A. et al. , Phys. Rev. B, 49, 12614 (1994).Google Scholar
13. Schranz, W., Fuit, A., Dolinar, P. et al. , Phys. Rev. Lett., 71, 1561 (1993).Google Scholar
14. Grivei, E., Cassart, M., Issi, J.-P. et al. , Phys. Rev. B, 48, 8514 (1993).Google Scholar
15. Frenkel, Ya.L, Kinetic Theory of Liquids, (Nauka, Moscow, 1975; also Engi. Transl. by Pergamon Press)Google Scholar
16. Ubbelohde, A.R., The Molten State of Matter, (Wiley, New York, 1978).Google Scholar
17. Yukalov, V.I., Phys. Rep., 208 (6), 397 (1991).Google Scholar
18. Bruce, A.D., Cowley, R.A., Structural Phase Transitions, (Taylor & Francis Ltd., London, 1981).Google Scholar
19. Landau, L.D., Lifshitz, E.M., Statistical Physics, (Pergamon Press, Oxford, 1977).Google Scholar