Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:12:11.344Z Has data issue: false hasContentIssue false

Thermodynamic Re-Assessment of the Co-Nb System

Published online by Cambridge University Press:  01 February 2011

Cuiyun He
Affiliation:
he@mpie.de, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, United States
Frank Stein
Affiliation:
stein@mpie.de, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
Dierk Raabe
Affiliation:
Raabe@mpie.de, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
Get access

Abstract

A new thermodynamic assessment of the Co-Nb system is presented. All experimental phase diagram data available from the literature have been critically reviewed and assessed using thermodynamic models for the Gibbs energies of the individual phases (Thermo-Calc). Compared to previous assessments more elaborate models for the description of the C14 and C36 Laves phases and for the μ phase were employed. Thereby a calculated phase diagram is obtained which satisfactorily agrees with the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sauthoff, G., Intermetallics. Weinheim, Germany: VCH; (1995).Google Scholar
2. Livingston, J.D., Phys. Status Solidi 131(a), 415 (1992).Google Scholar
3. Stein, F., Palm, M. and Sauthoff, G., Intermetallics 12, 713 (2004).Google Scholar
4. Stein, F., Palm, M. and Sauthoff, G., Intermetallics, 13, 1056 (2005).Google Scholar
5. Köster, W. and Mulfinger, W. Z. Metallkd. 30, 348 (1938).Google Scholar
6. Wallbaum, H.J., Arch. Eisenhuettenwes. 14, 521 (1941).Google Scholar
7. Wallbaum, H.J., Z. Kristallogr. 103, 391 (1941).Google Scholar
8. Saito, S. and Beck, P.A., Trans. Metall. Soc. AIME 218, 670 (1960).Google Scholar
9. Shurin, A.K. and Dmitrieva, G.P., Vopr. Fiz. Met. Metalloved. 18, 175 (1964).Google Scholar
10. Raman, A., Trans. Metall. Soc. AIME 236, 561 (1966).Google Scholar
11. Pargeter, J.K. and Hume-Rothery, W., J. Less-Common Met. 12, 366 (1967).Google Scholar
12. Bataleva, S.K., Kuprina, V.V., Markiv, V.Y., Burnashova, V.V., Ronami, G.N., Kuznetsova, S.M., Vest. Mosk. Univ., Khim. 11, 432 (1970).Google Scholar
13. Sprengel, W., Denkinger, M. and Mehrer, H., Intermetallics 2, 127 (1994).Google Scholar
14. Stein, F., Jiang, D., Palm, M., Sauthoff, G., Grüner, D. and Kreiner, G., Intermetallics 16, 785 (2008).Google Scholar
15. Kaufman, L. and Nesor, H., Metall. Trans. A6, 2115 (1975).Google Scholar
16. Kaufman, L. and Nesor, H., CALPHAD 2, 81 (1978).Google Scholar
17. Bormann, R. and Busch, R., J. Non Cryst. Solids 117/118, 539 (1990)Google Scholar
18. Hari Kumar, K.C., Ansara, I., Wollants, P. and Delaey, L.. J Alloys Compd. 267, 105 (1998).Google Scholar
19. Jansson, B., Trita Mac-0234 (Royal Institute of Technology, Stockholm, Sweden, (1984).Google Scholar
20. Sundman, B., Jansson, B. and Andersson, J.-O., CALPHAD 9, 153 (1985).Google Scholar
21. Ansara, I., Chart, T.G., Guillermet, A.F., Hayes, F.H., Kattner, U.R., Pettifor, D.G., Saunders, N. and Zeng, K., CALPHAD 21, 171 (1997).Google Scholar
22. Grüner, D., Stein, F., Palm, M., Konrad, J., Ormeci, A., Schnelle, W., Grin, y. and Kreiner, G., Z. Kristallogr. 221, 319 (2006).Google Scholar