Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T14:16:20.398Z Has data issue: false hasContentIssue false

Thermal Stress in Doped Silicate Glasses (B,P) Deposited by PECVD and LPCVD

Published online by Cambridge University Press:  15 February 2011

H. Bouchard
Affiliation:
Groupe des Couches Minces, Department of Engineering Physics, École Polytechnique, C. P. 6079, Succ. A, Montréal, Québec, Canada, H3C 3A7
A. Azelmad
Affiliation:
Goal Electronics Inc. Waterloo, Ontario, Canada, N2L 6J7
J.F. Currie
Affiliation:
Groupe des Couches Minces, Department of Engineering Physics, École Polytechnique, C. P. 6079, Succ. A, Montréal, Québec, Canada, H3C 3A7
M. Meunier
Affiliation:
Groupe des Couches Minces, Department of Engineering Physics, École Polytechnique, C. P. 6079, Succ. A, Montréal, Québec, Canada, H3C 3A7
S. Blain
Affiliation:
Mitel S.C.C., 18 boul. de I'Aéroport, Bromont, Québec, Canada, J0I 1L0
T. Darwall
Affiliation:
Mitel S.C.C., 18 boul. de I'Aéroport, Bromont, Québec, Canada, J0I 1L0
Get access

Abstract

Using an in situ stress measurement technique which measures stress as a function of annealing temperature, we have investigated the effect of phosphorous and boron doping of silicon dioxide glass films deposited by low-pressure chemical vapor deposition (LPCVD) and plasma-enhanced chemical vapor deposition (PECVD). The stress at room temperature is σi. Upon heating, it increases to a maximum, σm, corresponding to a temperature Tm, above which the stress is reduced to zero at a temperature T0. All these parameters plus the expansion coefficient are dependent on dopant concentrations and deposition technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Singer, P. H., Semicon. Int., 1989.48.Google Scholar
2 Sunami, H., Itoh, Y. and Sato, K., J. of Appl. Phys., 41, 5115, (1970).Google Scholar
3 Mclnemey, E.J. and Flinn, P.A., Proc. IEEE/IRPS, 1982. 264.Google Scholar
4 Shioya, Y. and Maeda, M., J. Electrochem. Soc., 133, 1943, (1986).CrossRefGoogle Scholar
5 Bhushan, B., Murarka, S.P. and Gerlach, J., J. Vac. Sci. Technol. B, 8, 1068, (1990).Google Scholar
6 Shintan, A.i, Sugaki, S. and Nakashima, H., J. Appl. Phys., 51, 4197, (1980).Google Scholar
7 Taylor, J.A., J. Vac. Sci. Technol. A, 9, 2464, (1991).Google Scholar
8 Learn, A.J., J. Electrochem. Soc., 132, 405, (1985).Google Scholar
9 Gagnon, G., Azelmad, A., Currie, J.F., Brebner, J.L. and Gujrathi, S.C., 9e VMIC, Santa Clara, 1992. 459.Google Scholar
10 Bouchard, H., Azelmad, A., Currie, J.F. and Meunier, M., J. Can. Phys., 1992 (in press).Google Scholar