Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T14:08:51.853Z Has data issue: false hasContentIssue false

Thermal Stability and Semiconducting Properties of Epitaxial La0.7Sr0.3MnO3 Films

Published online by Cambridge University Press:  10 February 2011

K. S. So
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Horn, Kowloon, Hong Kong, People's Republic of China
K. H. Wong
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Horn, Kowloon, Hong Kong, People's Republic of China
W. B. Wu
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Horn, Kowloon, Hong Kong, People's Republic of China
Get access

Abstract

La0.7Src.3MnO3 (LSMO) perovskite oxide films have been grown on (001) LaAlO3 (LAO) by pulsed laser deposition. The films were deposited in an ambient oxygen pressure of 0.1 m Torr to 200 mTorr and under different substrate temperatures. Their structural properties were examined by X-ray diffractometry. Heteroepitaxial growth was confirmed for films deposited at 650°C or above. Electrical measurements suggest that the charge carrier concentraticn of the films varies with their oxygen content and shows high stability against further thermal treatment. Semiconducting LSMO films at room temperature were obtained for deposition at oxygen pressure ≤ 60 m Torr. The epitaxial LSMO films have been used as the semiconducting channel of a ferroelectric field effect transistor. Heteroepitaxial Pb(Zr0.52Ti0.48)O3/LSMO/LAO structures have been fabricated and characterized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 McCormack, M., Jin, S., Tiefel, T. H. Fleming, R. M., Philips, J. M., and Ramesh, R., Appl. Phys. Lett. 64, 3045 (1994)Google Scholar
2 Ju, H. L., Kwon, C., Li, Q. Greene, R. L., and Venkatessan, T., Appl. Phys. Lett. 65, 2108 (1994)Google Scholar
3 Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R. and Chen, L. H., Science 264, 413 (1994)Google Scholar
4 Xiong, G. C., Li, Q., Ju, H. L., Mao, S. N., Senapati, L., Xi, X. X., Greene, R. L., and Venkatesan, T., Appl. Phys. Lett. 66, 1427 (1995)Google Scholar
5 Trajanovic, Z., Kwon, C., Robson, M. C., Kim, K.-C., Rajeswari, M., Ramesh, R., Venkatesan, T., Lofland, S. E., Bhagat, S. M., and Fork, D., Appl. Phys. Lett. 69, 1005 (1996).Google Scholar
6 Gommert, E., Cerva, H., Rucki, A., Helmolt, R.v., Wecker, J., Kuhrt, C. and Samwer, K., J. Appl. Phys. 81, 5496 (1997)Google Scholar
7 Fontcuberta, J., Bibes, M., Martinez, B., Trik, V., Ferrater, C., Sanchez, F., and Varela, M., Appl. Phys. Lett. 74, 1743 (1999)Google Scholar
8 Lu, Yu, Li, X. W, Gong, G. Q., Xiao, G., Gupta, A, Lecoeur, P., Sun, J.Z., Wang, Y. Y., and Dravid, V. P., Phys. Rev. B 54, R8357 (1996).Google Scholar
9 Sun, J. Z., Gallagher, W. J., Duncombe, P. R., Krusin-Elbaum, L., Altman, R. A., Gupta, A., Lu, Yu, Gong, G. Q., and Xiao, Gang, Appl. Phys. Lett. 69 3266 (1996).Google Scholar
10 Viret, M, Drouet, M., nassar, J., Contour, J. P., Fermon, C., and Fert, A., Europhys. Lett. 39, 545 (1997).Google Scholar
11 Watanable, Yukio, Appl. Phys. Lett. 66, 1770 (1995)Google Scholar
12 Mathews, S., Ramesh, R., Venkatesan, T., Benedetto, J., Science 276, 238 (1997)Google Scholar
13 Wu, Wenbin, Wong, K. H., Li, X.-G., and Choy, C. L., J. Appl. Phys. 87, 3006 (2000).Google Scholar
14 Leung, Y. S., and Wong, K. H., Appl. Surf. Sci. 127–129, 491 (1998).Google Scholar