Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T23:25:41.904Z Has data issue: false hasContentIssue false

Thermal Expansion-Recovery Microscopy (ThERM) for microstructural characterization

Published online by Cambridge University Press:  15 April 2013

Esteban A. Domené
Affiliation:
Laboratorio de Electrónica Cuántica (LEC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
Nélida Mingolo
Affiliation:
Laboratorio de Haces Dirigidos (LHD), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Oscar E. Martínez
Affiliation:
Tolket SRL, Int. Güiraldes 2160, Pabellón I, Ciudad. Universitaria, CABA C1428EAH, Buenos Aires, Argentina.
Get access

Abstract

In this work we compare two different detection schemes that are sensitive to the focus shift of a probe beam due to induced surface curvature. The technique on which both detection schemes are based is called ThERM (Thermal Expansion-Recovery Microscopy) and allows the retrieval of the thermal diffusivity at microscopic levels, hence mapping such magnitude over a sample surface. The induced thermal expansion defocuses the probe beam due to the surface deformation (curvature). The dependence of the defocusing with the pump modulation frequency yields the thermal diffusivity of the sample at the impinging location. The explored depth is controlled by the pump beam size. By scanning both beams, a complete map of the thermal diffusivity can be retrieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bincheng, L., Roger, J. P., Pottier, L., and Fournier, D., J. Appl. Phys. 86, 5314 (1999).Google Scholar
Rochais, D., Le Houëdec, H., Enguehard, F., Jumel, J., and Lepoutre, F., J. Phys. D: Appl. Phys. 38, 1498 (2005).CrossRefGoogle Scholar
Salazar, A., Sánchez-Lavega, A., and Fernández, J., J. Appl. Phys. 69, 1216 (1991).CrossRefGoogle Scholar
Rosencwaig, A., Opsal, J., and Willenborg, D. L., Appl. Phys. Lett. 43, 166 (1983).CrossRefGoogle Scholar
Opsal, J., Rosencwaig, A., and Willenborg, D. L., Appl. Opt. 22, 3169 (1983).CrossRefGoogle Scholar
Martínez, O. E., Balzarotti, F., and Mingolo, N., Applied Physics. B90, 69 (2008).CrossRefGoogle Scholar
Mingolo, N. and Martínez, O. E., J. Appl. Phys. 111, 123526 (2012).CrossRefGoogle Scholar
Domené, E. A. and Martínez, O. E., Rev. Sci. Instrum. 84, 016104 (2013).CrossRefGoogle Scholar
Domené, Esteban A., Balzarotti, Francisco, Bragas, Andrea V., and Martínez, Oscar E., Opt. Lett. 34, 37973799 (2009).CrossRefGoogle Scholar
Archiopoli, U. C., Mingolo, N., and Martínez, O. E., Surf. Coat. Technol. 205, 3087 (2011).CrossRefGoogle Scholar