Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T07:48:05.079Z Has data issue: false hasContentIssue false

Thermal expansion of corium prepared from UO2 and Zircaloy-2

Published online by Cambridge University Press:  24 May 2012

Shun Hirooka
Affiliation:
Japan Atomic Energy Agency, 319-1194 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken, Japan
Masatoshi Akashi
Affiliation:
Japan Atomic Energy Agency, 319-1194 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken, Japan
Teppei Uchida
Affiliation:
Japan Atomic Energy Agency, 319-1194 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken, Japan
Kyoichi Morimoto
Affiliation:
Japan Atomic Energy Agency, 319-1194 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken, Japan
Masato Kato
Affiliation:
Japan Atomic Energy Agency, 319-1194 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken, Japan
Get access

Abstract

In this study, sintered pellets were prepared from Zircaloy-2 oxide and UO2 as a parameter of content ratio (Zr contents were 0, 24.3, 49.0, 73.4, and 97.9 at% in metal). The sintered pellets were heated in 5%H2/Ar gas. UO2 pellets underwent simple thermal expansion caused by thermal vibration while Zircaloy-2 oxide pellets underwent thermal expansion and volume change with phase transformation. Finally, the 24.3, 49.0, and 73.5 at%Zr-UO2 pellet specimens showed both phenomena. However, phase transformation temperatures were lower than that of Zircaloy-2 oxide, and volume changes were much smaller. X-ray diffraction patterns obtained after thermal expansion measurements showed that the 24.3 at%Zr-UO2 specimen contained tetragonal and cubic (Zr, U)O2 while the 73.5 at%Zr-UO2 specimen contained mainly monoclinic ZrO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hofmann, P., J. Nucl. Mater. 270 (1999) 194211 Google Scholar
2. Fink, J. K., J. Nucl. Mater. 279 (2000) 118 Google Scholar
3. Hein, R.A., Sjodahl, L.A., Szwarc, R., J. Nucl. Mater. 25 (1968) 99.Google Scholar
4. Martin, D.G., J. Nucl. Mater. 152 (1988) 94.Google Scholar
5. Ronchi, C., Sheindlin, M., Musella, M., Hyland, G.J., J. Appl. Phys. 85 (1999) 776.Google Scholar
6. Adams, J. W., Nakamura, H. H., Ingel, R. P. and Rice, R. W., J. Am. Ceram. Soc., 9 68 (1985) C-228-C-231 Google Scholar
7. Cohen, I. and Schaner, B. E., J. Nucl. Mater. 9 (1963) 1852 Google Scholar
8. Bansal, G. K. and Heuer, A. H., Acta Metallurgica, 20 11 (1972) 12811289 Google Scholar
9. Nawale, A. B., Kulkarni, N., Karmakar, S., Das, A. K., Bhoraskar, S. V. and Mathe, V. L., J. Phys. Conf. Ser. 208 (2010) 012121 Google Scholar