Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:10:36.475Z Has data issue: false hasContentIssue false

Thermal Annealing of Vacancy and Interstitial Loops in Ion Irradiated Copper*

Published online by Cambridge University Press:  25 February 2011

B. C. Larson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
T. S. Noggle
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. F. Barhorst
Affiliation:
Emerson Electric Company, St. Charles, Missouri 63301
Get access

Abstract

X-ray diffuse scattering has been used to study the thermal annealing of vacancy and interstitial loops in Ni-ion irradiated copper. The diffuse scattering formalism is reviewed and diffuse scattering measurements are reported on liquid-He temperature Ni-ion irradiated copper after annealing to 40, 275, and 300 °C. Size distributions are presented for vacancy and interstitial loops after each anneal and the thermal-induced changes are discussed in terms of loop dissolution and coalescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems,Inc.

References

1. Kitajima, K.in Point Defects and Defect Interactions in Metals, ed. By J., Takamura, M., Doyama, and M., Kiratani, University of Tokyo Press, Tokyo, 1982 p. 807.Google Scholar
2. Robinson, M. T., in Fundamental Aspects of Radiation Damage in Metals, ed. by Robinson, M. T. and Young, F. W. Jr., (ERDA CONF-751006-PI, Oak Ridge, TN, 1976) p. 1.Google Scholar
3. Eyre, B. L. and English, C. A. in Ref. 1, p. 799.Google Scholar
4. Larson, B. C. and Schmatz, W., Phys. Stat. Sol. (b) 99, 267 (1980).10.1002/pssb.2220990126Google Scholar
5. Ehrhart, P., Trinkaus, H., and Larson, B. C., Phys. Rev.Google Scholar
6. Larson, B. C. and Young, F. W. Jr., in Ref. 1, p. 679.Google Scholar
7. Trinkaus, H., Phys. Stat. Sol. (b) 54, 209 (1972).10.1002/pssb.2220540120CrossRefGoogle Scholar
8. Trinkaus, H., Z. Angw. Phys. 31, 229(1971).Google Scholar
9. Ohr, S. M., Phys. Stat. Sol. (b) 64, 317 (1974).10.1002/pssb.2220640137Google Scholar
10. Narayan, J. and Ohr, S. M., J. Nucl. Mat. 85/86, 515 (1979).10.1016/0022-3115(79)90540-3Google Scholar
11. Pochettino, A. A. and Iphorski, M., J. Nucl. Mat. 57, 356 (1975).10.1016/0022-3115(75)90222-6Google Scholar
12. Shimomura, Y., Kitagawa, K., Takai, Y., and Hashimoto, H. in Ref.1, p. 709.Google Scholar
13. Stathopoulos, A., Phil. Mag. 44, 285 (1981).10.1080/01418618108239534Google Scholar