Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:42:25.782Z Has data issue: false hasContentIssue false

Thermal Annealing of Light-Induced K Centers in Hydrogenated Amorphous Silicon Nitride

Published online by Cambridge University Press:  21 February 2011

E. D. Tober
Affiliation:
Department of Physics, University of California, Davis, CA 95616
E. Sigari
Affiliation:
IBM, Storage Systems Products Division, 5600 Cottle Rd., San Jose, CA 95193
J. Kanicki
Affiliation:
IBM, Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
M. S. Crowder
Affiliation:
IBM, Storage Systems Products Division, 5600 Cottle Rd., San Jose, CA 95193
Get access

Abstract

The thermally-induced decay of light-induced, paramagnetic neutral silicon dan-gling bonds(K centers ) in hydrogenated amorphous silicon nitride thin films is monitored using electron spin resonance. The nitride films are of gate-quality and nitrogen-rich and are deposited at two different temperatures (250 and 400 °C). The kinetics for isothermal annealing of the light-induced K° states is dependent upon sample deposition temperature and is observed to follow a stretched exponential dependence, exp {— (t/τ)β}, upon annealing time (t). The stretched exponential factor, β, shows a non-linear dependence upon annealing temperature including temperature independent regimes. Thermal annealing is thermally activated with an apparent activation energy of ∼ 0.4 eV and is independent of deposition temperature. These results indicate that annealing is a dispersive process which involves hopping and multiple trapping or trap controlled hopping in the thermal annealing of light induced K centers in amorphous SiN1.6:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lustig, N. and Kanicki, J., J.Appl. Phys., 65, 395 (1989).CrossRefGoogle Scholar
2. Katayama, M., Morimoto, H., Yasuda, S., Tanaka, H., and Hijikigawa, M., SID '88 Digest, pp. 310 (1988).Google Scholar
3. Chikamura, T., Hotta, S., and Nagata, S., Mater. Res. Soc. Symp. Proc., 95, 421 (1987).CrossRefGoogle Scholar
4. Krick, D.T., Lenahan, P.M., and Kanicki, J., Appl. Phys. Lett., 51, 608 (1987).CrossRefGoogle Scholar
5. Krick, D.T., Lenahan, P.M., and Kanicki, J., Phys. Rev. B, 38, 8226 (1988)CrossRefGoogle Scholar
6. Tober, E.D., Crowder, M. S. and Kanicki, J., Mater. Res. Soc. Proc., 192, 725 (1990).CrossRefGoogle Scholar
7. Crowder, M.S., Tober, E.D., and Kanicki, J., Appl. Phys. Lett., 57, 1995 (1990).CrossRefGoogle Scholar
8. Kanicki, J., Gelatos, A., Sankharan, M., Crowder, M. S., and Tober, E.D., Appl. Phys. Lett., 57, 698 (1990).CrossRefGoogle Scholar
9. Lenahan, P.M. and Curry, S.E., Appl. Phys. Lett., 56, 157 (1990).CrossRefGoogle Scholar
10. Krick, D.T., Lenahan, P.M., and Kanicki, J., Appl. Phys. Lett., 51, 608 (1986).CrossRefGoogle Scholar
11. Tober, E.D., Crowder, M.S., and Kanicki, J., Appl. Phys. Lett., (submitted).Google Scholar
12. Scher, H. and Montroll, E.W., Phys. Rev. B, 12, 2455 (1975).CrossRefGoogle Scholar
13. Nagels, P. in Amorphous Semiconductors, edited by Brodsky, M.H. (Springer Verlag 1985) pp. 136.Google Scholar
14. Pfister, G. and Scher, H., Phys. Rev. B, 15, 2062 (1977).CrossRefGoogle Scholar
15. Jackson, W.B., Phys. Rev. B, 38, 3595 (1988).CrossRefGoogle Scholar