Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T17:07:46.004Z Has data issue: false hasContentIssue false

Theory of volume transitions in polyelectrolyte gels

Published online by Cambridge University Press:  10 May 2012

Mithun K. Mitra
Affiliation:
Polymer Science and Engineering, University of Massachusetts Amherst, MA 01003, U.S.A.
M. Muthukumar
Affiliation:
Polymer Science and Engineering, University of Massachusetts Amherst, MA 01003, U.S.A.
Get access

Abstract

We present the key assumptions and results of a newly developed theory in order to account for the self-consistent cascade effects of counterion condensation and volume collapse of polyeletrolyte gels. In the present theory, the role of the specificity and valency of counterions on the volume transitions are also treated. These features and the fluctuations of monomer concentration and local electrolyte charge density are included on top of the familiar features of the Flory-Huggins theory and the classical rubber elasticity theory in the previously used Flory-Dusek-Patterson-Tanaka theory of polyelectrolyte gels. We have computed the swelling equilibria by satisfying the multicomponent nature of the system and the Donnan equilibria. A few major effects are illustrated in terms of the dependence of volume transition on the solvent quality, temperature, salt concentration, valency and specificity of the counterion, and polymer charge density. Criteria for the emergence of a reentrant volume transition are also derived.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Flory, P. J., “ Principles of Polymer Chemistry” (Cornell University Press, Ithaca, 1953).Google Scholar
2.Dusek, K. and Prins, W., Advances in Polymer Science 6, 1 (1969).Google Scholar
3.Shibayama, M. and Tanaka, T., Advances in Polymer Science 109, 1 (1993).CrossRefGoogle Scholar
4.Tanaka, T., Fillmore, D., Sun, S. T., Nishio, I., Swislow, G., and Shah, A., Phys. Rev.Lett. 45, 1636 (1980).CrossRefGoogle Scholar
5.Ohmine, I. and Tanaka, T., J. Chem. Phys. 77, 5725 (1982).CrossRefGoogle Scholar
6.Hirokaw, Y. and Tanaka, T., J. Chem. Phys. 81, 6379 (1984).CrossRefGoogle Scholar
7.Hirotsu, S., Hirokawa, Y., and Tanaka, T., J. Chem. Phys 87, 1392 (1987).CrossRefGoogle Scholar
8.Narh, K. A. and Keller, A., J. Polym. Sci., Part B: Polym Phys. 31, 231 (1993).CrossRefGoogle Scholar
9.Narh, K. A. and Keller, A., J. Polym. Sci., Part B: Polym Phys. 32, 1697 (1994).CrossRefGoogle Scholar
10.Delsanti, M., Dalbiez, J. P., Spalla, O., Belloni, L., and Drifford, M., ACS Symp. Ser. 548, 381 (1994).CrossRefGoogle Scholar
11.Pelta, J., Livolant, F., and Sikorav, J. L., J. Biol. Chem. 271, 5656 (1996).CrossRefGoogle Scholar
12.Beer, M., Schmidt, M., and Muthukumar, M., Macromolecules 30, 8375 (1997).CrossRefGoogle Scholar
13.Raspaud, E., de la Cruz, M. O., Sikorav, J. L., and Livolant, F., Biophys. J. 74, 381 (1998).CrossRefGoogle Scholar
14.Saminathan, M., Anthony, T., Shirahata, A., Sigal, L., Thomas, T., and Thomas, T. J., Biochemistry 38, 3821 (1999).CrossRefGoogle Scholar
15.Sabbagh, I. and Delsanti, M., Eur. Phys. J. E 1, 75 (2000).CrossRefGoogle Scholar
16.Prabhu, V. M., Muthukumar, M., Wignall, G. D., and Melnichenko, Y. B., Polymer 42, 8935 (2001).CrossRefGoogle Scholar
17.Nishida, K., Kaji, K., Kanaya, T., and Shibano, T., Macromolecules 35, 4084 (2002).CrossRefGoogle Scholar
18.Bordi, F., Cametti, C., Tan, J. S., Boris, D. C., Krause, W. E., Plucktaveesak, N., and Colby, R. H., Macromolecules 35, 7031 (2002).CrossRefGoogle Scholar
19.Qu, D., Baigl, D., Williams, C. E., M¨owald, H., and Fery, A., Macromolecules 36, 6878 (2003).CrossRefGoogle Scholar
20.Prabhu, V. M., Muthukumar, M., Wignall, G. D., and Melnichenko, Y. B., J. Chem. Phys. 119, 4085 (2003).CrossRefGoogle Scholar
21.Wen, Q. and Tang, J. X., J. Chem. Phys. 121, 12666 (2004).CrossRefGoogle Scholar
22.Volk, N., Vollmer, D., Schmidt, M., Oppermann, W., and Huber, K., Adv. Polym. Sci. 166, 29 (2004).10.1007/b11348CrossRefGoogle Scholar
23.Kirwan, L. J., Papastavrou, G., and Borkovec, M., Nano Lett. 4, 149 (2004).CrossRefGoogle Scholar
24.Kanai, S. and Muthukumar, M., J. Chem. Phys. 127, 244908 (2007).CrossRefGoogle Scholar
25.Loh, P., Deen, G. R., Vollmer, D., Fischer, K., Schmidt, M., Kundagrami, A., and Muthukumar, M., Macromolecules 41, 9352 (2008).CrossRefGoogle Scholar
26.Horkay, F., Tasaki, I., and Basser, P. J., Biomacromolecules 2, 195 (2001).CrossRefGoogle Scholar
27.Shibayama, M., Polymer Journal 43, 18 (2011) .CrossRefGoogle Scholar
28.Tanaka, T., Phy. Rev. A 17, 763 (1978).CrossRefGoogle Scholar
29.Tanaka, T., Sato, E., Hirokawa, Y., Hirotsu, S. and Peetermans, J., Phys. Rev. Lett. 55, 2455 (1985)CrossRefGoogle Scholar
30.Tanaka, T., Physica A: Stat Mech. 140, 261 (1986).CrossRefGoogle Scholar
31.McCoy, J.L. and Muthukumar, M., J. Polym. Sci. Polym. Phys. 48, 2193 (2010).CrossRefGoogle Scholar
32.Dusek, K. and Patterson, D., J. of Polym. Sci. A 6, 1209 (1968).CrossRefGoogle Scholar
33.Tanaka, T., Phy. Rev. Lett. 40, 12 (1978).CrossRefGoogle Scholar
34.Khokhlov, A. R., J. Phys. A 13, 979 (1980).CrossRefGoogle Scholar
35.Khokhlov, A. R. and Kramarenko, E. Y., Macromol. Theory Simul. 3, 45 (1994).CrossRefGoogle Scholar
36.Muthukumar, M., J. Chem. Phys. 120, 9343 (2004).CrossRefGoogle Scholar
37.Muthukumar, M., Hua, J., and Kundagrami, A., J. Chem. Phys 132, 084901 (2010).CrossRefGoogle Scholar
38.Hua, J., Mitra, M.K. and Muthukumar, M., J.Chem. Phys. (Under Review).Google Scholar
39.Press, W. H., Tuokolsky, S. A., Vetterling, W. T., and Flannery, B. P., “ Numerical Recipes” (Cambridge University Press, New York, 2007).Google Scholar
40.Marcus, Y., Chem. Rev. 88, 1475 (1988).CrossRefGoogle Scholar