Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T00:43:40.912Z Has data issue: false hasContentIssue false

Theory of Recombination in Non-Crystalline Junctions

Published online by Cambridge University Press:  31 January 2011

Marco Nardone
Affiliation:
mnardone1@verizon.net, University of Toledo, Physics & Astronomy, Toledo, Ohio, United States
Victor G. Karpov
Affiliation:
vkarpov@gmail.com, University of Toledo, Physics & Astronomy, Toledo, Ohio, United States
Diana Shvydka
Affiliation:
diana.shvydka@utoledo.edu, University of Toledo, Radiation Oncology, Toledo, Ohio, United States
Get access

Abstract

A theory of non-crystalline recombination junctions is developed and compared to the experimental data. Junction transport is represented as hopping in both real and energy spaces, dominated by rare yet exponentially effective optimum channels having favorable configurations of localized states. Our work correlates the current-voltage characteristics of non-crystalline devices with material parameters and predicts large non-ideality factors increasing under light, and possible variations between nominally identical devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mott, N. F. and Davis, E. A. Electronic Processes in Non-Crystalline Materials. (Oxford University Press, Oxford, 1979).Google Scholar
2. Cohen, J. D. in Semiconductors and Semimetals, ed. by Pankove, J. I. (1984), Vol. 21C, p. 9.Google Scholar
3. Karpov, V. G. Shvydka, D. Jayamaha, U. and Compann, A. D. J. Appl. Phys. 94, 5809 (2003)Google Scholar
4. Walter, T. Herberholz, R. Muller, C. and Schock, H. W. J. Appl. Phys. 80, 4411 (1996)Google Scholar
5. Raikh, M. E. and Ruzin, I. M. in Mesoscopic Phenomena in Solids, ed. by Althsuler, B. L., Lee, P. A., and Webb, R. A. (Elsevier, New York, 1991), p. 315.Google Scholar
6. Baranovskii, S. D. Karpov, V. G. and Shklovskii, B. I. Eksper, Zh.. Teor. Fiz. 94, 278 (1988) [Sov Phys. JETP 67, 588 (1988)].Google Scholar
7. Fahrenbruch, A. L. and Bube, R. H. Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion. (Academic Press, New York, 1983).Google Scholar
8. Sze, S. M. Physics of Semiconductor Devices. (Willey & Sons, New York, 1981).Google Scholar
9. Sah, C. T. Noyce, R. N. and Shockley, W. in Proceedings of the IRE (IEEE, 1957), p. 1228.Google Scholar
10. Rau, U. Appl. Phys. Lett. 74 (1), 111 (1999); U. Rau A. Jasenek, H. W. Schock F. Engelhardt, and Th. Meyer, Thin Solid Films 361-362, 298 (2000)Google Scholar
11. Padovani, F. A. and Stratton, R. Solid State Electron. 9, 695 (1966)Google Scholar
12. Abakumov, V. N. Perel, V. I. and Yassievich, I. N. Nonradiative Recombination in Semiconductors. (North Holland, 1991).Google Scholar
13. Harju, R. Karpov, V. G. Grecu, D. and Dorer, G. J. Appl. Phys. 88, 1794 (2000)Google Scholar
14. Shvydka, D. Karpov, V. G. and Compann, A. D. Appl. Phys. Lett. 80, 3114 (2002)Google Scholar