Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:48:33.004Z Has data issue: false hasContentIssue false

A theoretical approach to the energetic stability and geometry of hydrogen and oxygen terminated diamond (100) surfaces

Published online by Cambridge University Press:  01 February 2011

Daniel Petrini
Affiliation:
daniel.petrini@mkem.uu.se, Department of Material Chemistry, Angstrom Laboratory,, Box 538, Uppsala, Uppland, 75321, Sweden, 46184713736
Karin Larsson
Affiliation:
karin.larsson@mkem.uu.se
Get access

Abstract

The thermodynamic stability of diamond (100) surfaces as a function of degree of hydrogen and oxygen-related termination coverage has been theoretically studied using DFT techniques. The results show that an exchange of the hydrogen atoms with hydroxyl groups is disfavored, whereas a corresponding exchange with oxygen atoms (in the ketone or ether position) is energetically preferred. The adsorption of up to about 50 % oxygen coverage (ether position) is, however, largely disfavored compared to a fully hydrogen-terminated surface. However, this oxygen termination will be energetically improved as the coverage increases above the 50 % level. The adsorption energy per terminating species (at 100% surface coverage) is −4.13 eV, −4.30 eV, −5.95 eV and 6.21 eV for H, OH, O(ketone) and O(ether) species, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 van der Weide, J., Zhang, Z., Baumann, P. K., Wensell, M. G., Bernholc, J., and Nemanich, R. J., Physical Review B (Condensed Matter) 50, (8), 5803–6 (1994).Google Scholar
2 Zhang, Z., Wensell, M., and Bernholc, J., Physical Review B (Condensed Matter) 51, (8), 5291–6 (1995).Google Scholar
3 Maier, F., Ristein, J., and Ley, L., Physical Review B (Condensed Matter and Materials Physics) 64, (16), 165411–1 (2001).Google Scholar
4 Larsson, K., Bjorkman, H., and Hjort, K., Journal of Applied Physics 90, (2), 1026–34 (2001).Google Scholar
5 Laikhtman, A., Hoffman, A., Kalish, R., Avigal, Y., Breskin, A., Chechik, R., Shefer, E., and Lifshitz, Y., Applied Physics Letters 73, (10), 1433–5 (1998).Google Scholar
6 Popa, E., Notsu, H., Miwa, T., Tryk, D. A., and Fujishima, A., Electrochemical and Solid-State Letters 2, (1), 4951 (1999).Google Scholar
7 Garrido, J. A., Hartl, A., Kuch, S., Stutzmann, M., Williams, O. A., and Jackmann, R. B., Applied Physics Letters 86, (7), 073504 (2005).Google Scholar
8 Kanazawa, H., Kwang-Soup, S., Sakai, T., Nakamura, Y., Umezawa, H., Tachiki, M., and Kawarada, H., Diamond and Related Materials 12, (3–7), 618–22 (2003).Google Scholar
9 Petrick, S., and Benndorf, C., Diamond and Related Materials 10, (3–7), 519–25 (2001).Google Scholar
10 Rezek, B., Garrido, J. A., Stutzmann, M., Nebel, C. E., Snidero, E., and Bergonzo, P., Physica Status Solidi A 193, (3), 523–8 (2002).Google Scholar
11 Rebuli, D. B., Aggerholm, P., Butler, J. E., Connell, S. H., Derry, T. E., Doyle, B. P., Maclear, R. D., Sellschop, J. P. F., and Sideras-Haddad, E., Nuclear Instruments & Methods in Physics Research, Section B (Beam Interactions with Materials and Atoms) 158, (1–4), 701–5 (1999).Google Scholar
12 Hossain, M. Z., Kubo, T., Aruga, T., Takagi, N., Tsuno, T., Fujimori, N., and Nishijima, M., Surface Science 436, (1–3), 6371 (1999).Google Scholar
13 Thomas, R. E., Rudder, R. A., and Markunas, R. J., Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films) 10, (4, pt.3), 2451–7 (1992).Google Scholar
14 Kern, G., Hafner, J., Furthmuller, J., and Kresse, G., Surface Science 352–354, 745–9 (1996).Google Scholar
15 Alfonso, D. R., Drabold, D. A., and Ulloa, S. E., Physical Review B (Condensed Matter) 51, (20), 14669–85 (1995).Google Scholar
16 Hohenberg, P., and Kohn, W., Physical Review 136, (3B), B864–B871 (1964).Google Scholar
17 Denisenko, A., Aleksov, A., and Kohn, E., Diamond and Related Materials 10, (3–7), 667672 (2001).Google Scholar
18 Delley, B., Journal of Chemical Physics 92, (1), 508–17 (1990).Google Scholar
19 Delley, B., Journal of Chemical Physics 113, (18), 7756–64 (2000).Google Scholar
20 Monkhorst, H. J., and Pack, J. D., Physical Review B (Solid State) 13, (12), 5188–92 (1976).Google Scholar
21 Perdew, J. P., Physica B 172, (1–2), 16 (1991).Google Scholar
22 Ziesche, P., Kurth, S., and Perdew, J. P., Computational Materials Science 11, (2), 122–7 (1998).Google Scholar
23 Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Physical Review B (Condensed Matter) 46, (11), 6671–87 (1992).Google Scholar
24 Becke, A. D., Journal of Chemical Physics 97, (12), 9173–7 (1992).Google Scholar
25 Pehrsson, P. E., and Mercer, T. W., Surface Science 460, (1–3), 4966 (2000).Google Scholar
26 Frenklach, M., Huang, D., Thomas, R. E., Rudder, R. A., and Markunas, R. J., Applied Physics Letters 63, (22), 3090 (1993).Google Scholar
27 Zheng, X. M., and Smith, P. V., Surface Science 262, (1–2), 219234 (1992).Google Scholar
28 Skokov, S., Weiner, B., and Frenklach, M., Physical Review B (Condensed Matter) 49, (16), 11374–82 (1994).Google Scholar
29 Badziag, P., and Verwoerd, W. S., Surface Science 183, (3), 469–83 (1987).Google Scholar