Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:03:54.657Z Has data issue: false hasContentIssue false

Theoretical and Experimental Understanding of Charge-Injection GeTe/Sb2Te3Superlattice Phase Change Memory

Published online by Cambridge University Press:  09 June 2014

Norikatsu Takaura*
Affiliation:
Low-power Electronics Association & Project, Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
Get access

Abstract

A charge-injection GeTe/Sb2Te3 superlattice phase change memory (PCM or PRAM) has been developed as a candidate for a non-volatile memory that replaces NAND flash memory. It differs from PRAM with the conventional material of GeSbTe, and is therefore named “TRAM (topological switching random access memory)”. First principle calculations showed a resistance change in the GeTe/Sb2Te3 superlattice was enhanced by charge injection. The fabrication and analyses of a one-resistor TEG revealed that the superlattice structure was maintained after 1M endurance, which proved the occurrence of non-melting resistance change in TRAM. The reset current of TRAM was found to be less than 1/5 of that of conventional PRAM. Furthermore, TRAM enables a set -speed of 10 ns and reset -operation by DC-sweep to be achieved, which experimentally proved the atomic movement in TRAM can be enhanced by charge injection.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

THE 3rd. REPORT Ultra Low Voltage Device Project for Low-Carbon Society (in Japanese), http://www.leap.or.jp/seikahoukokukai3.pdf, 68, January 2014.Google Scholar
Freitas, R. and Wilcke, W. W., IBM Journal of Research and Development, 52(4/5), 439448 (2008).CrossRefGoogle Scholar
Ovshinsky, S., Phys. Rev. Lett., 21, 14501453 (1968).CrossRefGoogle Scholar
Phase Change Materials: Science and Applications, edited by Raoux, S., Wutting, M., (Springer, 2009).CrossRefGoogle Scholar
Sasago, Y., Kinoshita, M., Morikawa, T., Kurotsuchi, K., Hanzawa, S., Mine, T., Shima, A., Fujisaki, Y., Kume, H., Moriya, H., Takaura, N., and Torii, K., 2009 Symposium on VLSI Technology, 2425, June 2009.Google Scholar
Numonyx JSPCM128A00B85ES SAR-0905-803 (Chipworks, 2009).Google Scholar
Samsung K571229ACM-BQ12 512Mbit PCM 65nm BiCMOS PCM Process PPR-1012-803 (Chipworks, 2011).Google Scholar
Micron MT66R7072A10AB5ZZW 1Gbit Phase Change Memory 45 nm BiCMOS PCM Process (Chipworks, 2013).Google Scholar
Akel, A., Caulfield, A.M., Mollov, T.I., Gupta, R.K., Jhala, R., and Swanson, S., 2011 Proceedings of the 3rd USENIX conference on Hot topics in storage and file systems , https://www.usenix.org/legacy/events/hotstorage11/tech/slides/akel.pdf, June 2011.Google Scholar
Matsuzaki, N., Kurotsuchi, K., Matsui, Y., Tonomura, O., Yamamoto, N., Fujisaki, Y., Kitai, N., Takemura, R., Osada, K., Hanzawa, S., Moriya, H., Iwasaki, T., Kawahara, T., Takaura, N., Terao, M., Matsuoka, M., and Moniwa, M., 2005 IEEE International Electron Devices Meeting (IEDM 2005), 31.1, December 2005.Google Scholar
Morikawa, T., Kinoshita, K., Matsuzaki, M., Matsui, N., Fujisaki, Y., Hanzawa, Y., Kotabe, S., Terao, A., Moriya, M., Iwasaki, H/, Matsuoka, T., Nitta, M., Moniwa, F., Koga, M., Takaura, N., 2007 IEEE International Electron Devices Meeting (IEDM 2007), 307310, December 2007.CrossRefGoogle Scholar
Morikawa, T., Akita, K., Ohyanagi, T., Kitamura, M., Kinoshita, M., Tai, M., and Takaura, N., 2012 IEEE International Electron Devices Meeting (IEDM 2012), 737740, December 2012.Google Scholar
Chong, T. C., Shi, L. P., Miao, X. S., Tan, P. K., Zhao, R. and Cai, Z. P., Jpn. J. Appl. Phys., 39, 737740 (2000).CrossRefGoogle Scholar
Tominaga, J., Shima, T., Fons, P., Simpson, R., Kuwahara, M., and Kolobov, A., Jpn. J. Appl. Phys., 48, 03A053 (2009).CrossRefGoogle Scholar
Tominaga, J., Simpson, R., Fons, P., and Kolobov, A., Proceedings of EPCOS 2010, 5459, September 2010.Google Scholar
Takaura, N., Ohyanagi, T., Tai, M., Kitamura, M., Kinoshita, M., Akita, K., Morikawa, T., Kato, S., Araidai, M., Kamiya, K., Yamamoto, T. and Shiraishi, K., 2014 IEEE International Conference on Microelectronic Test Structure(ICMTS2014), 2.2, March 2014.Google Scholar
Takaura, N., Ohyanagi, T., Morikawa, T., Kitamura, S., Tai, M., Kinoshita, M., Akita, K., Tominaga, J., Proceedings of EPCOS 2013, 119120, September 2013.Google Scholar
Simpson, R. E., Fons, P., Kolobov, A.V., Fukaya, T., Krbal, M., Yagi, T., and Tominaga, J., Nature Nanotechnology, 6, 501505 (2011).CrossRefGoogle Scholar
Kolobov, A. V., Fons, P., Frenkel, A. I., Ankudinov, A. L., Tominaga, J., and Uruga, T.: Nature Materials., 3, 703 (2004).CrossRefGoogle Scholar
Kato, S., Araidai, M., Kamiya, K., Yamamoto, T., Ohyanagi, T., Takaura, N., and Shiraishi, K., 2013 International Conference on Solid State Devices and Materials (SSDM2013), 544545, September 2013.Google Scholar
Takaura, N., Ohyanagi, T., Kitamura, M., Tai, M., Kinoshita, M., Akita, K., Morikawa, T., Kato, S., Araidai, M., Kamiya, K., Yamamoto, T., Shiraishi, K., 2013 symposium on VLSI technology, T130T131, June 2013 Google Scholar
Shiraishi, K., Yang, M.Y., Kato, S., Araidai, M., Kamiya, K., Yamamoto, T., Ohyanagi, T., Takaura, N., Niwa, M., Magyari-Kope, B., and Nishi, Y., 2013 International Conference on Solid State Devices and Materials(SSDM2013), 574575, September 2013.Google Scholar
Kamiya, K., Yang, M.Y., Magyari-K¨ope, B., Niwa, M., Nishi, Y., and Shiraishi, K., 2012 IEEE International Electron Devices Meeting (IEDM 2012), 478481, December 2012.Google Scholar
Sa, B., Zhou, J., Sun, Z., Tominaga, J., and Ahuja, R., Phys. Rev. Lett., 109, 096802 (2012)CrossRefGoogle Scholar
Tominaga, J., Kolovov, A. V., Fons, P., Wang, X., Richter, J., Saito, Y., and Nakano, T., Murakami, S., Proceedings of EPCOS 2013,57, September 2013.Google Scholar
To be published in VLSI Technology 2014 Google Scholar
Tominaga, J., Kolobov, A. V., Fons, P., Nakano, T., and Murakami, S., Adv. Mater. Interfaces 2013, DOI: 10.1002/admi.201300027 CrossRefGoogle Scholar
Ohyanagi, T., Takaura, N., Kitamura, M., Tai, M., Kinoshita, M., Akita, K., Morikawa, T., Kato, S., Araidai, M., Kamiya, K., Yamamoto, T., Shiraishi, K., 2013 IEEE International Electron Devices Meeting (IEDM 2012), 30.5, December 2013.Google Scholar
Ohyanagi, T., Takaura, N., Kitamura, M., Tai, M., Kinoshita, M., Akita, K., Morikawa, T., and Tominaga, J., Jpn. J. Appl. Phys., 52, 05FF01 (2013).CrossRefGoogle Scholar
Burr, G. W., Breitwisch, M. J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lastras, L. A., Padilla, A., Rajendran, B., Raoux, S., and Shenoy, R., Journal of Vacuum Science & Technology B, 28(2), 223262 (2010)CrossRefGoogle Scholar
Feng, G., Liu, B., Song, Z., Lv, S., Wu, L., and Feng, S., J. Nanosci. And Nanotechnol., 9, 1526 (2009).CrossRefGoogle Scholar
Kato, S., Araidai, M., Ohyanagi, T., Takaura, N., Shiraishi, K., 19th Workshop on Gate Stack Technology and Physics (in Japanese), 6972, January 2014.Google Scholar
Kitamura, M., Morikawa, T., Ohyanagi, T., Tai, M., Kinoshita, M., Akita, K., and Takaura, N., 2013 International Conference on Solid State Devices and Materials (SSDM2013), 546547, September 2013.Google Scholar
Morikawa, T., Kitamura, M., Ohyanagi, T., Tai, M., Kinoshita, M., Akita, K., and Takaura, N., Advanced Metallization Conference 2013 (ADMETA plus 2013), 7.6, October 2013.Google Scholar
Saito, Y., Tominaga, J., Fons, P. J., Kolobov, A. V., Proceedings of EPCOS 2013, 123125, September 2013.Google Scholar