Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T13:16:00.245Z Has data issue: false hasContentIssue false

Theoretical Analysis of Fowler Nordheim Parameterization and RLC Characteristics for Ring Cathode Field Emitter Arrays for Next Generation RF Amplifiers

Published online by Cambridge University Press:  10 February 2011

K. L. Jensen*
Affiliation:
Code 6840, ESTD, Naval Research Lab., Washington, DC 20375, kevin.jensen@nrl.navy.mil
Get access

Abstract

Of all applications for which field emitter arrays (FEAs) are being designed, RF vacuum microelectronics is the most technically challenging application. The current density is typically three orders of magnitude larger than that required for displays (which require < 0.1 A/cm2). Due to their high current density capabilities and instant turn-on, FEAs may be a promising alternative to thermionic emitters for use in Inductive Output Amplifiers (IOAs). An analytical model of a field emitter is used to estimate Fowler Nordheim A and B parameters, effective resistance and capacitance of the array under several GHz modulation, signal propogation lengths, total current and current density, and effects of emitter non-uniformity on the basis of array geometry and materials. Estimates of inductance, resistance, and capacitance are made to estimate the drive power required to produce a bunched electron beam for Inductive Output Amplifier applications. An electronic efficiency of 32% with 15 dB gain may be possible from an array producing 260 mA peak, 71 mA average, current at 10 GHz using a TWT helix 1.51 cm long.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kodis, M. A., Jensen, K. L., Zaidman, E. G., Goplen, B., Smithe, D., IEEE Trans. Plasma Sci. 24, 970 (1996).Google Scholar
2 Kodis, M. A., Jensen, K. L., Zaidman, E. G., Goplen, B., and Smithe, D., J. Vac. Sci. Tech. B14, 1990 (1996).Google Scholar
3 Jensen, K. L., Mukhopadhyay-Phillips, P., Zaidman, E. G., Nguyen, K., Kodis, M. A., Malsawma, L., Hor, C., Appl. Surf. Sci. 111, 204 (1997).Google Scholar
4 Jensen, K. L., Kodis, M. A., Murphy, R. A., Zaidman, E. G., J. Appl. Phys. 82, 845 (1997).Google Scholar
5 Brodie, I. and Schwoebel, P. R., Proc. of IEEE 82, 1006, (1994).Google Scholar
6 Binh, V. T., Garcia, N., and Purcel, S. T., “Electron Field Emission from Atom Sources”, Adv. In Imagining and Electron Physics, Vol. 95, 63, (Academic Press, New York, 1996).Google Scholar
7 Calame, J. P., Gray, H. F., Shaw, J. L., J. Appl. Phys. 73, 1485, 1993.Google Scholar
8 Nguyen, K. T., Freund, H. P., Zaidman, E. G., Vanderplaats, N., Kodis, M. A., Proceedings of the 1996 Microwave Power Tube Conference, Monterey, CA, May 1996.Google Scholar
9 Bandy, S. G., Green, M. C., Spindt, C. A., Hollis, M. A., Palmer, D., Goplen, B., Wintucky, E. G., IEEE Int'l. Conf. on Plasma Sci., San Diego, CA, May 19-22, 1997.Google Scholar
10 Charbonnier, F., Tech. Dig. of the 10th Int'l Vac. Micro. Conf. Kyongju, Korea, August 17-21, 1997.Google Scholar