Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:24:22.481Z Has data issue: false hasContentIssue false

Test of Kinetic Models for Interface Velocity, Temperature, and Solute Trapping in Rapid Solidification

Published online by Cambridge University Press:  21 February 2011

J.A. Kittl
Affiliation:
Semiconductor Process and Device Center, Texas Instruments Inc., Dallas, TX 75243, kittl@spdc.ti.com
M.J. Aziz
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
D.P. Brunco
Affiliation:
Intel Corporation, Santa Clara, CA 95052
M.O. Thompson
Affiliation:
Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

During rapid solidification, deviations from local interfacial equilibrium are manifested by solute trapping and interfacial undercooling. Both the solute trapping function and the interface velocity-temperature function have been measured in the Si:As alloy system following pulsed laser melting, permitting us to test models for nonequilibrium interface kinetics. The results are consistent with the Continuous Growth Model “without solute drag” of Aziz and Kaplan and are inconsistent with models that incorporate solute drag effects during solidification.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Aziz, M.J., Tsao, J.Y., Thompson, M.O., Peercy, P.S. and White, C.W., Phys. Rev. Lett. 56, 2489 (1986).Google Scholar
2 Aziz, M.J. and Kaplan, T., Acta Metall. 36, 1335 (1988).Google Scholar
3 Hillert, M. and Sundman, B., Acta Metall. 24, 731 (1976).Google Scholar
4 Cahn, J.W., Coriell, S.R. and Boettinger, W.J., Laser and Electron Beam Processing of Materials, edited by White, C.W. and Peercy, P.S. (Academic Press, New York, 1980), p. 89.Google Scholar
5 Ågren, J., Acta Metall. 37, 181 (1989); B. Jönsson and J.Ågren, J. Less Common Metals 145, 153 (1988).Google Scholar
6 Smith, P.M. and Aziz, M.J., Acta Met. Mater. 42, 3515 (1994).Google Scholar
7 Kittl, J.A., Aziz, M.J., Brunco, D.P. and Thompson, M.O., J. Crystal Growth 148, 172 (1995).Google Scholar
8 Kittl, J.A., Reitano, R., Aziz, M.J., Brunco, D.P. and Thompson, M.O., J. Appl. Phys. 73, 3725 (1993); D.P. Brunco, J.A. Kittl, C.E. Otis, P.M. Goodwin, M.O. Thompson and M.J. Aziz, Rev. Sci. Instrum. 64, 2615 (1993).Google Scholar
9 Kittl, J.A., Aziz, M.J., Brunco, D.P. and Thompson, M.O., Appl. Phys. Lett. 64, 2359 (1994).Google Scholar
10 Turnbull, D., J. Phys. Chem. 66, 609 (1962).Google Scholar
11 Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S. and Hammond, R.B., Appl. Phys.Lett. 42, 445 (1983).Google Scholar
12 Larson, B.C., Tischler, J.Z. and Mills, D.M., J. Mater. Res. 1, 144 (1986); M.O. Thompson, P.H. Bucksbaum and J. Bokor, Mater. Res. Soc. Symp. Proc. 35, 181 (1985).Google Scholar
13 Olesinski, R.W. and Abbaschian, G.J., Bull. Alloy Phase Diagrams 6, 254 (1985).Google Scholar
14 The CRC Materials Science and Engineering Handbook, edited by Shackelford, J.F. and Alexander, W. (CRC Press, Boca Raton, FL, 1992), p. 422.Google Scholar
15 Thermophysical Properties of Matter, Volume II “Thermal Conductivity of Nonmetallic Solids”, edited by Touloukian, Y.S. and Buyco, E.H., (IFI/Plenum, NY, Washington, 1970); T. Hirai, S. Hayashi and K. Niihara, Am. Ceram. Soc. Bull. 57, 1126 (1978).Google Scholar