Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:26:32.620Z Has data issue: false hasContentIssue false

Template Routes to Non-Oxide Ceramic Nano- and Micro-Structures

Published online by Cambridge University Press:  01 February 2011

Upal Kusari
Affiliation:
upal@sas.upenn.edu, University of Pennsylvania, Department of Chemistry, 231 S 34th STR, Philadelphia, PA, 19104, United States, 215-898-4783
Zhihao Bao
Affiliation:
gtg926i@mail.gatech.edu, Georgia Institute of Technology, School of Materials Science and Engineering, 771. Ferst Drive, Atlanta, GA, 30332, United States
Cai Ye
Affiliation:
cai.ye@mse.gatech.edu, Georgia Institute of Technology, School of Materials Science and Engineering, 771. Ferst Drive, Atlanta, GA, 30332, United States
Gul Ahmad
Affiliation:
gul.ahmad@mse.gatech.edu, Georgia Institute of Technology, School of Materials Science and Engineering, 771. Ferst Drive, Atlanta, GA, 30332, United States
Kenneth H Sandhage
Affiliation:
ken.sandhage@mse.gatech.edu, Georgia Institute of Technology, School of Materials Science and Engineering, 771. Ferst Drive, Atlanta, GA, 30332, United States
Larry G Sneddon
Affiliation:
lsneddon@sas.upenn.edu, University of Pennsylvania, Department of Chemistry, 231 S 34th Str, Philadelphia, PA, 19104, United States
Get access

Abstract

Non-oxide ceramic materials like boron carbide and silicon carbide are technologically relevant as advanced high temperature materials, while boron nitride is a thermally robust low-k insulating material with electronic applications. Efficient routes to boron carbide, boron nitride, and silicon carbide ceramic nanostructures have been developed which employ molecular and polymeric precursors, including the boron carbide precursor 6, 6'-bis(decaboranyl)hexane, the boron nitride precursor polyborazylene, and a commercially available silicon carbide precursor allylhydridopolycarbosilane(AHPCS), in conjunction with colloidal silica and biological silica “diatom” templates. Layered submicron-sized ordered void structures with three-dimensional periodicity and tunable length scales were fabricated by the melt infiltration of the precursors into ordered colloidal silica bead templates. Pyrolytic ceramic conversion followed by dissolution of the silica beads by chemical treatment with aqueous HF or NaOH generated highly uniform ceramic structures with thicknesses up to 50μm and ordered voids ranging in diameter from 50-150 nm. Following on earlier work by Sandhage who generated polymer and oxide ceramic structures, vacuum filtration of the ceramic precursor solutions through bioclastic silica diatom frustule templates generated polymer coated replicas of their 3-D micro- and nanostructures. Subsequent pyrolysis and dissolution of the frustules in 48% HF yielded free-standing ceramic structures with fine features on length scales of 60-200 nm. This technique therefore provides a large scale route to nano- and micro structured non-oxide ceramic materials. Structural control of the end products was achieved by changing the concentration of the precursor solution, pore size and/or the frustule template. Characterization by XRD, DRIFT, SEM, TEM and possible uses of these uniform nano- and micro-structured ceramics will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For examples, see: Nanoscale Science, Engineering and Technology, Research Directions report of the Basic Energy Sciences Nanoscience/Nanotechnology Group, US Department of Energy, 1999 and references therein.Google Scholar
2.(a) Wood, G. L., Janik, J. F., Pruss, E. A., Dreissig, D., Kroenke, W. J., Habereder, T., Noeth, H., Paine, R. T., Chem. Mater. 18, 1434 2006.Google Scholar
3.(a) Chang, B., Gersten, B., Adams, J. W., Szewczyk, S., Mater.Res. Soc. Symp. Proc. 848, 457 2005. (b) D. T. Welna, J. D. Bender, X. Wei, L. G. Sneddon, H. R. Allcock, Adv. Mater. 17, 859 2005.Google Scholar
4. Shi, Y., Meng, Y., Chen, D., Cheng, S., Chen, P., Yang, H., , Haifeng, Wan, Y., Zhao, D., Adv. Func. Mater. 16, 561 2006.Google Scholar
5.(a) Forsthoefel, K. M., Pender, M. J., Sneddon, L.G., Mater.Res. Soc. Symp. Proc. 728, 60 2002. (b) M. J. Pender, L. G. Sneddon, Chem. Mater. 12, 280 (2000).Google Scholar
6.(a) Turner, M. E., Trentler, T. J., Colvin, V. J., Adv. Mater. 13, 180 2001. (b) P. Jiang, J. F. Bertone, K. S. Hwang, V. L. Colvin, Chem. Mater. 11, 2132 (1999). (d) W. Stoeber, A. Fink, E. J. Bohn, J. Coll. Interf. Sci. 26, 62 (1968).Google Scholar
7.(a) Wideman, T., Sneddon, L. G., Chem. Mater. 8, 3 1996. (b) P. J. Fazen, E. E. Remsen, J. S. Beck, P. J. Carroll, A. R. McGhie, L. G. Sneddon, Chem. Mater. 7, 1942 (1995).Google Scholar
8.(a) Interrante, L. V., Moraes, K., MacDonald, L., Sherwood, W., Ceram. Trans. 144, 125 2002. (b) L. V. Interrante, C. W. Whitemarsh, W. Sherwood, H. J. Wu, R. Lewis, G. Maciel, Mater.Res. Soc. Symp. Proc. 346, 593 (1994).Google Scholar
9.(a) Losic, D., Mitchell, J. G., Voelcker, N. H., Chem. Commun. 39, 4905 2005. (b) E. K. Payne, R. Kathryn, N. L. Rosi, C. Xue, C. A. Mirkin, Angew. Chem., Int. Ed. 44, 5064 (2005).Google Scholar
10.(a) Shian, S., Cai, Y., Weatherspoon, M. R., Allan, S. M., Sandhage, K. H., J. Am. Ceram. Soc. 89, 694 2006. (b) M. R.Weatherspoon, S. M. Allan, Hunt, E., Cai, Y., K. H. Sandhage, Chem. Comm. 5, 651 (2005). (c) C. G. Gaddis, K. H. Sandhage, J. Mater. Res. 19, 2541 (2004).Google Scholar
11. Thomas, J. Jr , Weston, N. E., O'Connor, T. E., J. Am. Chem. Soc. 84, 4619 1962.Google Scholar
12. Brame, E. G. Jr , Margrave, J. L., Meloche, V. W., J. Inorg. Nucl. Chem. 5, 48 1957.Google Scholar