Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:46:33.106Z Has data issue: false hasContentIssue false

Temperature study of CVD graphene on Cu thin films: competition between C catalysis and Cu dewetting

Published online by Cambridge University Press:  22 May 2014

G. Amato
Affiliation:
The Quantum Research Laboratory, INRIM, strada delle Cacce 91, I-10135, Torino, Italy.
L. Croin
Affiliation:
The Quantum Research Laboratory, INRIM, strada delle Cacce 91, I-10135, Torino, Italy. Dept. of Applied Science and Technology, Polytechnic of Turin, Corso Duca degli Abruzzi 24, I-10129, Torino, Italy.
G. Milano
Affiliation:
Physics Dept. and NIS center, University of Turin, Via Pietro Giuria 1, I-10125, Torino, Italy.
E. Vittone
Affiliation:
Physics Dept. and NIS center, University of Turin, Via Pietro Giuria 1, I-10125, Torino, Italy.
Get access

Abstract

In this paper we report on a systematic study of Cu thin film dewetting by the monitoring of the intensity of the infra-red emission from the film surface during Rapid Thermal Chemical Vapor Deposition of graphene. The time evolution of Cu coverage highlights three typical stages of dewetting which strongly depend not only on the temperature and film thickness, but also on the pressure and composition of the gas in chamber. Consequently, we demonstrate that the Cu surface can be effectively activated in films at temperatures lower than in foils and the process can be fully controlled by adjusting those parameters, in order to reach the optimal conditions for graphene growth.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Srolovitz, D. J. and Safran, S. A., J. Appl. Phys., vol. 60, no. 1, p. 247, (1986).CrossRefGoogle Scholar
Thompson, C. V., Annu. Rev. Mater. Res., vol. 42, no. 1, pp. 399434, (2012).CrossRefGoogle Scholar
Tao, L., Lee, J., Chou, H., Holt, M., Ruoff, R. S., and Akinwande, D., ACS Nano, vol. 6, no. 3, pp. 23192325, (2012).CrossRefGoogle Scholar
Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S.-E., Sim, S. H., Song, Y. I., Hong, B. H., and Ahn, J.-H., Nano Lett., vol. 10, no. 2, pp. 490493, (2010).CrossRefGoogle Scholar
Piazzi, M., Croin, L., Vittone, E., and Amato, G., SpringerPlus, vol. 1, no. 1, p. 52, (2012).CrossRefGoogle Scholar
Ismach, A., Druzgalski, C., Penwell, S., Schwartzberg, A., Zheng, M., Javey, A., Bokor, J., and Zhang, Y., Nano Lett., vol. 10, no. 5, pp. 15421548, (2010).CrossRefGoogle Scholar
Bartelt, N. C. and McCarty, K. F., MRS Bull., vol. 37, no. 12, pp. 11581165, (2012).CrossRefGoogle Scholar
Faggio, G., Capasso, A., Messina, G., Santangelo, S., Dikonimos, T., Gagliardi, S., Giorgi, R., Morandi, V., Ortolani, L., and Lisi, N., J. Phys. Chem. C, vol. 117, no. 41, pp. 2156921576, (2013).CrossRefGoogle Scholar
Lewis, J. S., J. Chem. Soc. Resumed, pp. 820826, (1932).CrossRefGoogle Scholar
Duan, S. and Senkan, S., Ind. Eng. Chem. Res., vol. 44, no. 16, pp. 63816386, (2005).CrossRefGoogle Scholar
Zhao, P., Kumamoto, A., Kim, S., Chen, X., Hou, B., Chiashi, S., Einarsson, E., Ikuhara, Y., and Maruyama, S., J. Phys. Chem. C, vol. 117, no. 20, pp. 1075510763, (2013).CrossRefGoogle Scholar
Turchanin, A., Weber, D., Büenfeld, M., Kisielowski, C., Fistul, M. V., Efetov, K. B., Weimann, T., Stosch, R., Mayer, J., and Gölzhäuser, A., ACS Nano, vol. 5, no. 5, pp. 38963904, (2011).CrossRefGoogle Scholar