Published online by Cambridge University Press: 10 February 2011
Current trends of silicon integrated circuit manufacturing demand better temperature control in various thermal processing steps. Rapid thermal processing (RTP) has become a key technique because its single wafer process can accommodate the reduced thermal budget requirements arising from shrinking the dimensions of devices and the trend to larger wafers. However, temperature control by conventional infrared pyrometry, which is highly dependent on wafer back side conditions, is insufficiently accurate for upcoming technologies. Lucent Technologies Inc., formerly known as AT&T Microelectronics and AT&T Bell Laboratories, has developed a powerful real-time pyrometry technique using the A/C ripple signal from heating lamps for in-situ temperature measurement. Temperature and electrical data from device wafers have been passively collected by ripple pyrometers in three RTP systems and analyzed. In this paper we report the statistical analysis of ripple temperature and electrical data from device wafers for a typical implant anneal process temperature range of 900 to 1000 °C.