Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T13:47:34.341Z Has data issue: false hasContentIssue false

Temperature Effect of Ionic Transition Metal Complex Light-Emitting Electrochemical Cells

Published online by Cambridge University Press:  20 May 2013

Takeo Akatsuka
Affiliation:
Instituto de Ciencia Molecular, Universidad de Valencia, C/ Catedrático J. Beltrán 2, ES-46980 Paterna (Valencia), Spain Advanced Materials Research Center, Nippon Shokubai Co. Ltd., 5-8 Nishi Otabi-cho, Suita, 564-8512 Osaka, Japan
Stephan van Reenen
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
Enrico Bandiello
Affiliation:
Instituto de Ciencia Molecular, Universidad de Valencia, C/ Catedrático J. Beltrán 2, ES-46980 Paterna (Valencia), Spain
Henk J. Bolink
Affiliation:
Instituto de Ciencia Molecular, Universidad de Valencia, C/ Catedrático J. Beltrán 2, ES-46980 Paterna (Valencia), Spain
Get access

Abstract

Light-Emitting Electrochemical Cells (LECs) consist of solution processable ionic light-emitting materials and use air stable electrodes. Their operational mechanism relies on both ionic and electronic conduction. The dynamic behavior is primarily determined by the ionic conductivity. Here, we demonstrate that with increasing temperature the LECs turn-on faster yet without decreasing the efficiency. This is due to the activation energy of ionic transport and the temperature independent photoluminescence quantum yields.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reineke, S., Lindner, F., Schwartz, G., Seideler, N., Walzer, K., Lussem, B. and Leo, K., Nature 459, 234 (2009).CrossRefGoogle Scholar
Forrest, S. R. and Thompson, M. E., Chem. Rev. 107, 923 (2007).CrossRefGoogle Scholar
Malliaras, G. G., Salem, J. R., Brock, P. J. and Scott, C., Phys. Rev. B. 58, R13411 (1998).CrossRefGoogle Scholar
Zhu, X.-H., Peng, J., Cao, Y. and Roncali, J., Chem. Soc. Rev. 40, 3509 (2011).CrossRefGoogle Scholar
van Reenen, S, Matyba, P., Dzwilewski, A., Janssen, R. A. J., Edman, L. and Kemerink, M., J. Am. Chem. Soc. 132, 13776 (2010).CrossRefGoogle Scholar
van Reenen, S., Janssen, R. A. J. and Kemerink, M., Org. Electron. 12, 1746 (2011).CrossRefGoogle Scholar
van Reenen, S., Janssen, R. A. J. and Kemerink, M., Adv. Funct. Mater. 22, 4547 (2012).CrossRefGoogle Scholar
Slinker, J. D., Malliaras, G. G., Torres, S. F.-, Abruña, H. D., Chunwachirasiri, W. and Winokur, M. J., J. Appl. Phys. 95, 4381 (2004).CrossRefGoogle Scholar
Burnett, K. O., Crooker, P. P., Haegel, N. M., Yoshioka, Y., MacKenzie, D., Synth. Metal. 161, 1496 (2011).CrossRefGoogle Scholar
van Reenen, S, Akatsuka, T., Tordera, D., Kemerink, M. and Bolink, H. J., J. Am. Chem. Soc. 135, 886 (2013).CrossRefGoogle Scholar
Costa, R. D., Ortí, E., Bolink, H. J., Graber, S., Schaffner, S., Neuburger, M., Housecroft, C. E. and Constable, E. C., Adv. Funct. Mater. 19, 3456 (2009).CrossRefGoogle Scholar
Bolink, H. J., Coronado, E., Costa, R. D., Ortí, E., Sessolo, M., Graber, S., Doyle, K., Neuburger, M., Housecroft, C. E. and Constable, E. C., Adv. Mater. 20, 3910 (2008).CrossRefGoogle Scholar
Slinker, J. D., Gorodetsky, A. A., Lowry, M. S., Wang, J., Parker, S., Rohl, R., Bernhard, S. and Malliaras, G. G., J. Am. Chem. Soc. 126, 2763 (2004).CrossRefGoogle Scholar
Bolink, H. J., Coronado, E., Costa, R. D., Lardiés, N. and Ortí, E., Inorg. Chem. 47, 9149 (2008).CrossRefGoogle Scholar