Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T22:12:03.954Z Has data issue: false hasContentIssue false

Temperature Dependent Sensitivity Inversion in SnO1.8:Pd Mixed Nanoparticle Layer Based CO Sensors

Published online by Cambridge University Press:  01 February 2011

I. Aruna
Affiliation:
aruna.ivaturi@uni-duisburg-essen.de, University of Duisburg-Essen, Institute of Nano Structures and Technology, Faculty of Engineering, Bismarkstrasse 81, Duisburg, 47057, Germany
F. E. Kruis
Affiliation:
einar.kruis@uni-due.de, University of Duisburg-Essen, Institute of Nano Structures and Technology, Faculty of Engineering, 81 Bismarckstrasse, Duisburg, 47057, Germany
Get access

Abstract

This study reports a novel observation of the temperature dependent inversion in the CO sensitivity of the nanoparticle layers consisting of homogeneously mixed monodispersed Pd and SnO1.8 nanoparticles synthesized via aerosol route. Ability of sensing CO of as low as 10 ppb in dry synthetic air has been observed with decrease in nanoparticle size (to 5 nm) in the samples mixed with Pd nanoparticles, as compared to samples without Pd nanoparticles which show no sensitivity to CO in ppb levels. In contrast to the conductivity increase in SnO1.8 in response to CO exposure in the absence of Pd, the mixed nanoparticle layers exhibit decrease in conductivity. With increase in the operating temperature (523 to 673 K) reversal in the sensitivity has been observed at higher CO concentrations. The observed behavior can be understood in terms of the physiochemical and electronic processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Batzill, M. and Diebold, U., Prog. in Surf. Sci., 79, 47 (2005).Google Scholar
2. Ménini, P., Parret, F., Guerrero, M., Soulantica, K., Erades, L., Maisonnat, A., and Chaudret, B., Sens. Actuators B 103, 111 (2004).Google Scholar
3. Erades, L., Grandjeans, D., Nayral, C., Soulantica, K., Chaudret, B., Menini, P., Parret, F. and Maisonnat, A., New J. Chem., 30, 1026 (2006).Google Scholar
4. Kennedy, M. K, Kruis, F. E, Fissan, H., Mehta, B.R., Stappert, S., and Dumpich, G., J. Appl. Phys. 93, 551 (2003).Google Scholar
5. Joshi, R.K. and Kruis, F.E., Appl. Phys. Lett. 89, 153116 (2006).Google Scholar
6. Nienhaus, H., Kravets, V., Koutouzov, S., Meier, C., Lorke, A., Wiggers, H., Kennedy, M. K, and Kruis, F. E, J. Vac. Sci. Technol. B 24, 1156 (2006).Google Scholar
7. Dolbec, R. and Khakani, M. A. El, Appl. Phys. Lett. 90, 173114 (2007).Google Scholar
8. Schalow, T., Brandt, B., Starr, D. E., Laurin, M., Shaikhutdinov, S. K, Schauermann, S., Libuda, J., and Freund, H. –J., Angew. Chem. Int. Ed. 45, 3693 (2006).Google Scholar
9. Zheng, G. and Altman, E. I, Surf. Sci. 462, 151 (2000).Google Scholar
10. Schalow, T., Brandt, B., Laurin, M., Schauermann, S., Libuda, J., Freund, H. –J., J. Catal. 242, 58 (2006).Google Scholar
11. Nilsson, P.O. and Shivaraman, M. S, J. Phys. C: Solid State Phys. 12, 1423 (1979).Google Scholar
12. Aggarwal, S., Monga, A. P, Perusse, S. R, Ramesh, R., Ballarotto, V., Williams, E. D, Chalamala, B. R, Wei, Y., and Reuss, R. H, Science, 287, 2235 (2000).Google Scholar
13. Islam, M. N and Hakim, M. O, J. Mater. Sci. Lett. 5, 63 (1986).Google Scholar
14. Sze, S. M, Physics of Semiconductor Devices(Wiley, New York,1981).Google Scholar
15. Alfonso, D. R, Appl. Phys. Lett. 88, 051908 (2006).Google Scholar