Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:15:03.077Z Has data issue: false hasContentIssue false

Temperature Dependent Hall Measurements on PLD Thin Films

Published online by Cambridge University Press:  01 February 2011

Holger von Wenckstern
Affiliation:
wenckst@physik.uni-leipzig.de, University of Leipzig, Institute of Experimental Physics II, Linnéstraße 5, Leipzig, 04103, Germany
Matthias Brandt
Affiliation:
m_brandt@uni-leipzig.de, Universität Leipzig, Halbleiterphysik, Leipzig, 04103, Germany
Gregor Zimmermann
Affiliation:
gregor.zimmermann@physik.uni-leipzig.de, Universität Leipzig, Halbleiterphysik, Leipzig, 04103, Germany
Jörg Lenzner
Affiliation:
lenzner@physik.uni-leipzig.de, Universität Leipzig, Halbleiterphysik, Leipzig, 04103, Germany
Holger Hochmuth
Affiliation:
hochmuth@server1.rz.uni-leipzig.de, Universität Leipzig, Halbleiterphysik, Leipzig, 04103, Germany
Michael Lorenz
Affiliation:
mlorenz@physik.uni-leipzig.de, Universität Leipzig, Halbleiterphysik, Leipzig, 04103, Germany
Marius Grundmann
Affiliation:
grundmann@physik.uni-leipzig.de, Universität Leipzig, Halbleiterphysik, Leipzig, 04103, Germany
Get access

Abstract

The electrical properties of epitaxial ZnO thin films grown on sapphire substrates by pulsed laser deposition were investigated by temperature dependent Hall measurents. The thin films investigated were grown at different oxygen partial pressures ranging from 10-2 mbar to 1 mbar. The formation of a degenerate layer, determining the low temperature Hall data, depends on the oxygen partial pressure applied during growth. Further, the formation of such a layer can be correlated to the grain size of the samples. The thermal activation energy of dominant donors decreases in tendency with increasing oxygen partial pressure p(O2); it is about 100 meV for p(O2) ≤ 3 × 10-2 mbar and about 30 meV for p(O2) ≥ 0.1 mar. The concentration of donors and compensating acceptors increases with increasing p(O2).

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Look, D.C., Materials Science and Engineering B 80, 383 (2001).Google Scholar
2. Schmidt, O., Geis, A., Kiesel, P., Van de Walle, C. G., Johnson, N. M., Bakin, A., Waag, A., Döhler, G. H., Superlattices and Microstructures 39, 8 (2005).Google Scholar
3. Look, D. C., Mosbacker, H. L., Strzhemechny, Y. M., Brillson, L. J., Superlattices and Microstructures 38, 406 (2005).Google Scholar
4. Look, D. C., Jones, R. L., Sizelove, J. R., Garces, N. Y., Giles, N. C., and Halliburton, L. E., phys. stat. sol. (a) 195, 171 (2003).Google Scholar
5. Reynolds, D. C., Litton, C. W., Look, D. C., Hoelscher, J. E., Claflin, B., Collins, T. C., Nause, J., and Nemeth, B., J. Appl. Phys. 95, 4802 (2004).Google Scholar
6. Tampo, H., Yamada, A., Fons, P., Shibata, H., Matsubara, K., Iwata, K., and Niki, S., Nakahara, K. and Takasu, H., Appl. Phys. Lett. 84, 4412 (2004).Google Scholar
7. Strzhemechny, Y. M., Mosbacker, H. L., Look, D. C., Reynolds, D. C., Litton, C. W., Garces, N. Y., Giles, N. C., Halliburton, L. E., Niki, S., and Brillson, L. J. Appl. Phys. Lett. 84, 2545 (2004).Google Scholar
8. Look, D. C. and Sizelove, J. R., Phys. Rev. Lett. 82, 1237 (1999).Google Scholar
9. Petritz, R. L., Phys. Rev. 104, 1508 (1956), Orton, J. W.and Powell, M. J., Reports on Progress in Physics 43, 1263 (1980).Google Scholar
10. Seeger, K., Semiconductor Physics (Springer-Verlag, Berlin, 1999), chapter 6.Google Scholar
11. Auret, F. D., Goodman, S. A., Legodi, M. J., Meyer, W. E., and Look, D. C., Appl. Phys. Lett. 80, 1340 (2002).Google Scholar
12. Tuomisto, F., Saarinen, K., Look, D. C., and Farlow, G. C., Phys. Rev. B 72, 085206 (2005).Google Scholar
13. Hutson, A. R., Phys. Rev. 108, 222 (1957).Google Scholar