Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:26:52.137Z Has data issue: false hasContentIssue false

Tem Study of Radiation Damage and Annealing of Neutron Irradiated Zirconolite

Published online by Cambridge University Press:  15 February 2011

Gregory R. Lumpkin
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia
Katherine L. Smith
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia
Ron G. Blake
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia
Get access

Abstract

Neutron irradiation was used to simulate alpha-decay damage in zirconolite, resulting in a transformation from the crystalline to the amorphous state at doses of 4–25 × 1019 n/cm2 (E ≥ 1 MeV). With increasing dose, the radiation damage microstructures resemble damage caused by: 1) alpha-decay of 232Th and 238U in natural zirconolites, 2) alpha-decay of 238Pu or 244Cm in synthetic samples, and 3) collision cascades in samples irradiated with heavy ions. Heavily damaged zirconolite recovers to a defect fluorite phase on annealing at temperatures up to 1000 °C. The main stage of structural recovery was found to occur at temperatures of 600–800 °C. The microstructures after heating depend on the initial level of damage: zirconolite grains with low to moderate levels of damage anneal to imperfect single crystals, whereas heavily damaged grains recrystallize to a polycrystalline microstructure. Complications encountered in this work include the production of fission tracks (due to trace amounts of U) and a non-uniform distribution of damage at higher dose levels (possibly due to electron beam heating).

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M., and Ramm, E. J., in Radioactive Waste Forms for the Future. edited by Lutze, W. and Ewing, R. C. (North-Holland, Amsterdam, 1988) pp. 233334.Google Scholar
2 Harker, A. B., in Radioactive Waste Forms for the Future. edited by Lutze, W. and Ewing, R. C. (North-Holland, Amsterdam, 1988) pp. 335392.Google Scholar
3 Vance, E. R., Begg, B. D., Day, R. A., and Ball, C. J., in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R. C. (Mater. Res. Soc. Proc. 353, Pittsburgh, PA, 1995) pp. 767–774.Google Scholar
4 Lumpkin, G. R., Smith, K. L., and Blackford, M. G., J. Nucl. Mater., 224, 3142 (1995).Google Scholar
5 Ewing, R. C., Weber, W. J., and Clinard, F. W. Jr., Progr. Nucl. Energy, 29, 63127 (1995).Google Scholar
6 Woolfrey, J. L., Reeve, K. D., and Cassidy, D. J., J. Nucl. Mater., 108 & 109, 739747 (1982).Google Scholar
7 Ewing, R. C. and Headley, T. J., J. Nucl. Mater., 119, 102109 (1983).Google Scholar
8 Lumpkin, G. R., Ewing, R. C., Chakoumakos, B. C., Greegor, R. B., Lytle, F. W., Foltyn, E. M., Clinard, F. W. Jr., Boatner, L. A., and Abraham, M. M., J. Mater. Res., 1, 564 (1986).Google Scholar
9 Clinard, F. W. Jr., Rohr, D. L., and Roof, R. B., Nucl. Instr. Meth. Phys. Res., B1, 581586 (1984).Google Scholar
10 Weber, W. J., Wald, J. W., and Matzke, Hj., J. Nucl. Mater., 138, 196209 (1986).Google Scholar
11 Weber, W. J., Hess, N. J., and Maupin, G. D., Nucl. Instr. Meth. Phys. Res., B65, 102106 (1992).Google Scholar
12 Ewing, R. C. and Wang, L. M., Nucl. Instr. Meth. Phys. Res., B65, 319 (1992).Google Scholar
13 Ball, C. J., Blake, R. G., Cassidy, D. J., and Woolfrey, J. L., J. Nucl. Mater., 151, 151161 (1988).Google Scholar
14 White, T. J., Ewing, R. C., Wang, L. M., Forrester, J. S., and Montross, C., in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R. C. (Mater. Res. Soc. Proc. 353, Pittsburgh, PA, 1995) pp. 14131420.Google Scholar
15 Foltyn, E. M., Clinard, F. W. Jr., Rankin, J., and Peterson, D. E., J. Nucl. Mater., 136, 97103 (1985).Google Scholar
16 Vance, E. R., Ball, C. J., Blackford, M. G., Cassidy, D. J., and Smith, K. L., J. Nucl. Mater., 175, 58 (1990).Google Scholar