Published online by Cambridge University Press: 15 February 2011
Neutron irradiation was used to simulate alpha-decay damage in zirconolite, resulting in a transformation from the crystalline to the amorphous state at doses of 4–25 × 1019 n/cm2 (E ≥ 1 MeV). With increasing dose, the radiation damage microstructures resemble damage caused by: 1) alpha-decay of 232Th and 238U in natural zirconolites, 2) alpha-decay of 238Pu or 244Cm in synthetic samples, and 3) collision cascades in samples irradiated with heavy ions. Heavily damaged zirconolite recovers to a defect fluorite phase on annealing at temperatures up to 1000 °C. The main stage of structural recovery was found to occur at temperatures of 600–800 °C. The microstructures after heating depend on the initial level of damage: zirconolite grains with low to moderate levels of damage anneal to imperfect single crystals, whereas heavily damaged grains recrystallize to a polycrystalline microstructure. Complications encountered in this work include the production of fission tracks (due to trace amounts of U) and a non-uniform distribution of damage at higher dose levels (possibly due to electron beam heating).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.