Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:15:06.187Z Has data issue: false hasContentIssue false

TEM Study of High Quality GaN Grown by OMVPE Using an Intermediate Layer

Published online by Cambridge University Press:  15 March 2011

M. Benamara
Affiliation:
E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road M.S. 62-203, Berkeley CA 94720.
Z. Liliental-Weber
Affiliation:
E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road M.S. 62-203, Berkeley CA 94720.
S. Kellermann
Affiliation:
E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road M.S. 62-203, Berkeley CA 94720.
W. Swider
Affiliation:
E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road M.S. 62-203, Berkeley CA 94720.
J. Washburn
Affiliation:
E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road M.S. 62-203, Berkeley CA 94720.
J.H. Mazur
Affiliation:
E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road M.S. 62-203, Berkeley CA 94720.
E. D. Bourret-Courchesne
Affiliation:
E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road M.S. 62-203, Berkeley CA 94720.
Get access

Abstract

We report on high quality GaN layers grown with the use of one intermediate layer. The defect analysis shows that the density of dislocation is only 8×107/cm2 in these layers, compared to over 1010/cm2 for layers grown without the intermediate layer (IL). Electron microscopy on cross-section samples shows that deposition under certain specific conditions of a low- temperature IL directly benefits the quality of the subsequently deposited GaN layer. The growth of the GaN top layer appears to be similar to growth observed for lateral epitaxial overgrowth layers. This first time observation opens the possibility for using standard growth methods of GaN compounds to achieve a dislocation density comparable to that achieved with lateral overgrowth epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Fasol, G., The Blue Laser Diode, Springer-Verlag, Heidelberg (1997).Google Scholar
2. Amano, H., Sawaki, N., Akasaki, I. and Toyada, Y., Appl. Phys. Lett. 48, 353 (1986)Google Scholar
3. Marchand, H., Wu, X. H., Ibbetson, J. P., Fini, P. T., Kozodoy, P., Keller, S., Speck, J. S., DenBaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 73, 747 (1998).Google Scholar
4. Zheleva, T.S., Nam, O., Bremser, M., and Davis, R. F., Appl. Phys. Lett. 71, 247 (1997).Google Scholar
5. Liliental-Weber, Z., Benamara, M., Swider, W., Washburn, J., Park, J., Grudowski, P. A., Eiting, C.J. and Dupuis, R. D., MRS Internet J. Nitride Semicond. Res. 4S1, G4.6 (1999).Google Scholar
7. Iwaya, M., Takeuchi, T., Yamaguchi, S., Wetzel, C., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 37, L316 (1998).Google Scholar
8. Amano, H., Iwaya, M., Hayashi, N., Kashima, T., Katsuragawa, M., Takeuchi, T., Wetzel, C. and Akasaki, I., MRS Internet J. Nitride Semicond. Res. 4S1, G10.1 (1999)Google Scholar
9. Lahréche, H., Vennégués, P., Beaumont, B. and Gibart, P., Journal of Crystal Growth 205 (1999) pp.245252 Google Scholar
10. Bourret-Courchesne, E. D., Kellermann, S., Benamara, M., Liliental-Weber, Z. and Washburn, J., unpublished.Google Scholar
11. Odedra, R., Smith, L. M., Rushworth, S. A., Ravetz, M. S., Clegg, J., Kanjolia, R., Irvine, S. J. C., Ahmed, M. U., Bourret-Courchesne, E. D., Li, N. Y., Cheng, J., J. Electron. Mater. 29 N-1 (2000) pp. 161164 Google Scholar
12. Benamara, M., Liliental-Weber, Z., Bourret-Courchesne, E. D., Kellermann, S., Swider, W. and Washburn, J., submitted to APL.Google Scholar