Published online by Cambridge University Press: 21 February 2011
We have studied the microscopic effects of tensile stress on film thickness and grain growth in gold thin films of 25nm nominal thickness using transmission electron microscopy. Free-standing films were annealed at 150°C resulting in films with columnar grains and 〈111〉 fiber texture. After repeated anneals, tensile stresses caused by grain growth became large enough to cause cracks to form and propagate diffusively. While tensile stress must eventually result in an overall decrease in film thickness, local specimen thickening in front of crack tips is observed. The tensile stress also profoundly affected grain growth in these films. Grains near crack tips are larger than grains 400nm away from the tips, and elongated grains with axial ratios greater than 15 have been observed in cracked regions of the films.