Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T14:33:10.851Z Has data issue: false hasContentIssue false

TEM Analysis of Microstructures of AlN/sapphire grown by MOCVD

Published online by Cambridge University Press:  31 January 2011

Bo Cai
Affiliation:
bcai@brooklyn.cuny.edu, Brooklyn College, Physics, Brooklyn, New York, United States
Mim L Nakarmi
Affiliation:
mlnakarmi@brooklyn.cuny.edu, Brooklyn college, Physics, Brooklyn, New York, United States
Get access

Abstract

We report on microstructure analysis of aluminum nitride (AlN) epilayers by transmission electron microscopy (TEM). AlN epilayer samples were grown on sapphire substrates by metal organic chemical vapor deposition. Cross section and plan view images were taken by TEM to investigate the threading dislocations. Edge type threading dislocations dominate the total dislocation density. The threading dislocations are greatly reduced by inserting an intermediate layer prior to the growth of high temperature AlN epilayer. The dislocations further reduce with increasing thickness. Our results correlate with the dislocation density estimated from x-ray diffraction analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Taniyasu, Y., Kasu, M., and Makimoto, T., Nature (London) 441, 325 (2006).Google Scholar
[2] Li, J., Fan, Z. Y., Dahal, R., Nakarmi, M. L., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 89, 213510 (2006).Google Scholar
[3] Madelung, O., Semiconductor-Basic Data, Springer, New York, (1996) p. 69.10.1007/978-3-642-97675-9Google Scholar
[4] Levinshtein, M. E., Ramyantev, S.L., and Shur, M. S., Properties of Advanced Semiconductor Materials, Wiley, New York, (2001), p. 31.Google Scholar
[5] Bergh, A., Craford, G., Duggal, A., and Haitz, R., Physics Today, December 2001, pp. 42.Google Scholar
[6] Lakowicz, J. R., Pronciples of Fluorescence Spectroscopy, 2 nd edition, (Kluwer Academic Publishers, New York, 1999).Google Scholar
[7] Razeghi, M., and Rogalski, A., J. Appl. Phys. 79, 7433 (1996).Google Scholar
[8] Follstaedt, D. M., Missert, N. A., Koleske, D. D., Mitchell, C. C., and Cross, K. C.. Appl. Phys. Lett. 83, 4797 (2003).Google Scholar
[9] Pantha, B. N., Dahal, R.. Nakarmi, M. L., Nepal, N., Li, J., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 90, 241101 (2007).Google Scholar
[10] Lee, S. R., West, A. M., Allerman, A. A., Waldrip, K. E., Follstaedt, D. M., Provencio, P. P., Koleske, D. D., and Abernathy, C. R., Appl. Phys. Lett. 86, 241904 (2005).Google Scholar
[11] Dovidenko, K., Oktyabrsy, S., Narayan, J., J. Appl. Phys. 82, 4296 (1997).Google Scholar
[12] Khan, M. Asif, Shatalov, M., Maruska, H. P., Wang, H. M., and Kuokstis, E., Jpn. J. Appl. Phys. 44, 719 (2005).Google Scholar
[13] Xi, Y. A., Chen, K. X., Mont, F., Kim, J. K., Wetzel, C., Schubert, E. F., Liu, W., Li, X., and Smart, J. A., Appl. Phys. Lett. 89, 103106 (2006).Google Scholar
[14] Klapper, H., Mater. Chem. Phys. 66, 101 (2000).Google Scholar