Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:19:17.491Z Has data issue: false hasContentIssue false

Tailoring Grain-Boundary Segregation to Control Mechanical Properties

Published online by Cambridge University Press:  10 February 2011

D. B. Williams
Affiliation:
Department of Mat. Sci. & Eng., Lehigh University, Bethlehem PA 18015, dbwl@lehigh.edu
V. J. Keast
Affiliation:
Department of Mat. Sci. & Metallurgy, Cambridge University, Cambridge CB2 3QZ, UK
Get access

Abstract

Recent advances in our understanding of the role of the chemistry of grain boundaries in controlling the mechanical properties of materials (in particular intergranular brittle fracture) are reviewed. It is now possible in a modem field-emission gun (FEG) analytical transmission electron microscope (AEM) to measure the chemistry of sub-nanometer films of GB segregants while at the same time observing the effect (if any) on the bonding of the atoms within a nanometer of the boundary plane. This has been accomplished by the development of X-ray mapping (XRM) a powerful new tool for the study of segregation. For the first time, in the same instrument, on the same grain boundary, any changes in the boundary chemistry can be correlated with the occurrence or absence of brittle failure, which is often associated with boundary segregation. There is strong evidence that boundary segregation is extremely nonuniform, even in some strongly embrittling systems (e.g. Cu-Bi) and in these same systems, embrittling segregants introduce subtle but consistent changes in the bonding. Non-embrittling segregants (e.g. Ag in Cu) do not introduce detectable bonding changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bishop, H.E. in Methods of Surface Analysis, edited by Walls, J.M., (Cambridge University Press, Cambridge UK 1989) p. 87126.Google Scholar
2. Williams, D.B. and Carter, C.B., Transmission Electron Microscopy; a Text for Materials Science Plenum Press, New York, NY 1996, pp. 555635.10.1007/978-1-4757-2519-3Google Scholar
3. Watanabe, M., Carpenter, D.T. and Williams, D.B. in Electron Microscopy and Analysis, edited by Rodenburg, J. M. (Inst. of Physics Conf. Series # 153, Bristol, UK 1997) p. 295299.Google Scholar
4. Williams, D.B., Watanabe, M. and Carpenter, D.T., Microchimica Acta, (Suppl.) 15, p. 49(1998).Google Scholar
5. Keast, V.J., , V. J. and Williams, D.B., , D.B. in Electron Microscopy and Analysis, edited by Rodenburg, J.M. (Inst. of Physics Conf. Series # 153, Bristol, UK 1997) p. 299303.Google Scholar
6. Carpenter, D.T., Watanabe, M., Williams, D.B., Barmak, K. and Smith, D.A., in Boundaries &Interfaces in Materials: The David A. Smith Symposium, edited by Pond, R.C., Clark, W.A.T., King, A.H. and Williams, D. B., (TMS, Warrendale, PA 1998) p. 199204.Google Scholar
7. Losch, W., Acta Metall. 27, p. 885 (1979).Google Scholar
8. Messmer, R.P. and Briant, C.L., Acta Metall. 30, p. 457 (1982).Google Scholar
9. Hofmann, S. and Lejcek, P., Interface Science 3, p. 241 (1996).Google Scholar
10. Keast, V.J. and Williams, D.B., Acta Mater. 47, p. 3999 (1999).Google Scholar
11. Bruley, J., Keast, V.J., and Williams, D.B., J. Phys. D. (Appl. Phys.) 29, p. 1730 (1996).10.1088/0022-3727/29/7/008Google Scholar
12. Bruley, J., Keast, V.J., and Williams, D.B., Acta Mater, 47, p. 4009 (1999).Google Scholar
13. Lyman, C.E., Goldstein, J.I., Williams, D.B., Ackland, D.W., Harrach, S. von, Nicholls, A.W. and Statham, P.J., J. Microsc., 176, p. 85 (1994).Google Scholar
14. Rez, P. in Transmission Electron Energy-Loss Spectrometry in Materials Science edited by Disko, M.M., Ahn, C.C. and Fultz, B. (TMS, Warrendale, PA 1992) p. 107.Google Scholar
15. Egerton, R.F. in Electron Energy-Loss Spectroscopy in the Electron Microscope, Second Edition (Plenum Press, New York, NY 1996) p. 227237.10.1007/978-1-4757-5099-7Google Scholar
16. Michael, J.R., Lin, C-H., Sass, S.L., Scripta Metall. 22, p. 1121 (1988).Google Scholar
17. Bokshtein, B.S., Nikol'skii, G.S., and Smirnov, A.N., Phys. Met. Metall. 72, p. 142 (1991).Google Scholar
18. Hondros, E.D., and Seah, M.P., Int. Met. Rev. 22, p. 262 (1977).Google Scholar
19. Menyhard, M., Materials Science Forum 126–128, p. 205 (1993).Google Scholar
20. Menyhard, M., Yan, M. and Vitek, V., Acta Metall. Mater. 42, p. 2783 (1994).10.1016/0956-7151(94)90219-4Google Scholar
21. Powell, B.D., and Woodruff, D.P., Phil. Mag. 34, 169 (1976).10.1080/14786437608221933Google Scholar
22. Watanabe, T., Mat. Sci. & Eng. A176, p. 39 (1994).Google Scholar
23. Randle, V., The Role of the CSL in Grain Boundary Engineering, (The Institute of Materials, London 1996) p. 6263.Google Scholar
24. Lejcek, P.. Paidar, V., Adamek, J., and Hofmann, S., Acta Mater. 45, p. 3915 (1997).Google Scholar
25. Muller, D.A., Phys. Rev. B 58, p. 5989 (1998).10.1103/PhysRevB.58.5989Google Scholar
26. Muller, D.A., Subramanian, S., Batson, P.E., Silcox, J., and Sass, S.L., Acta Mater. 44, p. 1637 (1996).Google Scholar
27. Keast, V.J., Bruley, J., Rez, P., Maclaren, J.M. and Williams, D.B. Acta Mat. 46, p.481 (1998).10.1016/S1359-6454(97)00262-0Google Scholar
28. Johnson, W.C., Joshi, A. and Stein, D. F., Metall. Trans. 7A, p. 949 (1976).10.1007/BF02644059Google Scholar
29. Muthiah, R.C., Project Report to International Copper Assoc., University of Pennsylvania (1995).Google Scholar