Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:14:31.459Z Has data issue: false hasContentIssue false

Synthetic approaches to study aggregation of tripodal linkers on semiconductor surfaces

Published online by Cambridge University Press:  01 February 2011

Olena Taratula
Affiliation:
galoppin@andromeda.rutgers.edu, Rutgers University, Dept.Of Chemistry, 73 Warren Street, Newark, NJ, 07102, United States, 1-973-353-5056
Sujatha Thyagarajan
Affiliation:
sujathat@pegasus.rutgers.edu, Rutgers University, Department of Chemistry, 73 Warren Street, Newark, NJ, 07102, United States
Elena Galoppini
Affiliation:
galoppin@rutgers.edu, Rutgers University, Department of Chemistry, 73 Warren Street, Newark, NJ, 07102, United States
Get access

Abstract

Two tripod-shaped adamantane derivatives carrying a pyrene chromophore and three carboxylic acid binding groups, and varying in footprint size (∼ 0.7 and 2.7 nm2), were synthesized as models to study how the footprint size can influence the aggregation of organic dyes bound to ZrO2 thin films. Synthetic approaches and binding properties of large footprint tripodal linkers are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kalyanasundaram, K. and Grätzel, M., Coord. Chem. Rev. 77, 347 (1998).Google Scholar
2. Campbell, W. M., Burrell, A. K., Officer, D. L. and Jolley, K. W., Coord. Chem. Rev. 248, 1363 (2004).Google Scholar
3. Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K. and Arakawa, H., New J. Chem. 27, 783 (2003).10.1039/b300694hGoogle Scholar
4. Wang, L., Ernstorfer, R., Willig, F. and May, V. J. Phys. Chem. B 109, 9589 (2005).10.1021/jp0500539Google Scholar
5. Galoppini, E. and Thyagarajan, S., The Spectrum 18, 22 (2005).Google Scholar
6. Guo, W., Galoppini, E., Rydja, G. and Pardi, G., Tetrahedron Lett. 41, 7419 (2000).10.1016/S0040-4039(00)01187-4Google Scholar
7. Wei, Q. and Galoppini, E., Tetrahedron 60, 8497 (2004).10.1016/j.tet.2004.06.124Google Scholar
8. Lamberto, M., Pagba, C., Piotrowiak, P. and Galoppini, E., Tetrahedron Lett. 46, 4895 (2005).10.1016/j.tetlet.2005.05.034Google Scholar
9. Persson, P. (private communication).Google Scholar
10. Thyagarajan, S., Liu, A., Famoyin, O. A., Lamberto, M. and Galoppini, E., Tetrahedron 63, 7550 (2007).10.1016/j.tet.2007.05.055Google Scholar
11. Hoertz, P. G., Carlisle, R. A., Meyer, G. J., D. Wang, P. Piotrowiak and E. Galoppini, Nano Lett. 3, 325 (2003).10.1021/nl025946gGoogle Scholar
12. Taratula, O., Rochford, J., Piotrowiak, P., Galoppini, E., Carlisle, R. A. and Meyer, G. J., J. Phys. Chem. B 110, 15734 (2006).10.1021/jp0623847Google Scholar